В начале нашего века Хокинг принял деятельное участие в развитии еще одной теории на базе новых моделей квантовой гравитации, дающей парадоксальную картину природы пространства и времени на сверхмикроскопическом уровне. Эта необычная теория со странным названием «петлевая квантовая гравитация» (ПКГ) представляет нам пространство и время, состоящие из дискретных частей. Расчеты, выполненные Хокингом и другими известными физиками-теоретиками, представили простую и красивую картину, которая помогла объяснить многие загадочные явления, относящиеся к черным дырам и Большому взрыву. Но главное достоинство упомянутой теории заключается в том, что, хотя и в отдаленном будущем, ее предсказания можно будет проверить экспериментально, и ученые смогут обнаружить атомы пространства и времени, если они действительно существуют. В ПКГ речь идет о структуре пространства-времени в самых малых масштабах площади или объема. Представьте себе некую область, обозначенную границей, которая может быть задана материальным объектом или непосредственно геометрией пространства-времени. Что происходит, когда мы измеряем объем описанной области? Если геометрия пространства непрерывна, то размеры и объем рассматриваемой области могут бить любыми. Но если геометрия как бы «гранулирована», то мы получим целочисленные значения, и будет существовать некоторый минимальный объем.

В теории ПКГ на субэлементарном масштабе пространство оказывается не непрерывным, а состоящим из дискретных элементов, мельчайших единиц пространства, подобных открытым столетие назад квантам энергии. Объем такой минимальной единицы грубо задается кубом планковской длины (~10–35 м), введенной Планком.

Мы уже знаем, что на микроскопическом уровне частицам нельзя одновременно приписать определенные координаты и скорости, энергию и время ее изменения, все микрообъекты подобны пятнам масла на квантовых волнах вероятности. В квантовом мире нет «пустого» пространства в обыденном смысле. То, что обычно воспринимается нами как пустота, лишенная атомов и молекул, например, очень удаленные участки космоса без звезд, газа и пыли, ученые называют физическим вакуумом, кипящим морем особых виртуальных частиц и неисчерпаемым океаном энергии.

Опыт убеждает нас в том, что многие элементарные частицы похожи на маленькие безостановочно вращающиеся волчки, которым подчиняются микропроцессы, разрешают передачу лишь дискретных порций энергии, поэтому вращательное движение внутри частиц тоже происходит не с любыми, а только лишь с некоторыми дискретными угловыми моментами. Их называют спинами частиц, и они могут принимать целые и полуцелые значения. Частицы с целыми спинами называются бозонами, а с полуцелыми — фермионами, по именам индийского теоретика С. Бозе и итальянского физика Э. Ферми, которые первыми стали изучать специфические особенности этих двух видов частиц.

К бозонам принадлежат глюоны, частица света фотон, квант гравитационного поля гравитон, многие типы мезонов. В отряд фермионов входят кварки, электрон, нейтрино, протон с нейтроном и большинство других тяжелых частиц. Нетрудно заметить, что эти классы частиц играют совершенно различную роль в строении вещества. Фермионы составляют основу вещества, а бозоны — кванты связывающих их калибровочных полей. Свойства бозонов и фермионов настолько различны, что физики долгое время были уверены в том, что это — принципиально различные частички материи. Первые подозрения в скрытом родстве бозонов и фермионов возникли у теоретиков. Уж очень сходным был математический аппарат, описывающий эти два типа частиц! Да и вообще, если за единицу измерения взять спин, равный половине, то у бозонов будут четные целые спины, у фермионов — нечетные целые. Принципиальной разницы нет. Но почему же тогда природа разделила их непроницаемой стеной? Ведь на фоне разнообразных взаимопревращений частиц, столь характерных для микромира, фермионы всегда остаются фермионами, а бозоны — бозонами! В чем тут дело?

Сомнения усилились после открытия глюонов. Хотя это типичные бозоны и исполняют роль связывающего звена в кварковых структурах, они вместе с тем могут сами рождать новые глюоны, которые в свою очередь склеивают их между собой. Получается, что четкой границы между свойствами бозонов и фермионов нет, и те же глюоны имеют двойственную природу.

К идее бозон-фермионного родства теоретики пришли, анализируя уравнения, которым подчиняются эти частицы. Они придумали, как записать эти уравнения в виде, симметричном для целых и полуцелых спинов. А если есть симметрия, то стандартные методы теории Галуа позволяют рассчитать соответствующие мультиплеты: как говорится, это уже дело техники.

Перейти на страницу:

Поиск

Все книги серии Эволюция. Разум. Антропология

Похожие книги