Например, именно этот метод позволил определить, на какой глубине залегает нижняя граница конвективной зоны, ниже которой не проникают волны, отражающиеся от этой границы и от слоя температурного минимума в фотосфере. Получается, что, многократно отражаясь между этими уровнями, как в замкнутом резонаторе, волны приобретают информацию о многих свойствах среды между этими поверхностями. Так удалось узнать, что нижняя граница конвективной зоны залегает на глубине около 200 тысяч километров под фотосферой.
Кроме того, была получена зависимость скорости звука от расстояния до центра Солнца. А поскольку уже давно известно, что скорость звука в среде зависит от ее температуры, эти данные помогли уточнить, как изменяется температура по мере погружения в недра Солнца. Температура – один из основных параметров стандартной модели Солнца, поэтому сравнение расчетных (в рамках модели) значений температуры на разной глубине со значениями, которые получены независимым методом гелиосейсмологии, оказалось чрезвычайно полезным для модели.
Многие свойства Солнца зависят от того, как вращается светило на разных глубинах. Гелиосейсмология позволила определить скорость вращения на разных глубинах и на разных широтах, что сразу позволило отбросить некоторые модели как неверные и дало дополнительные подтверждения другим моделям. При этом удалось выяснить, что эффект дифференциальности вращения начинается со дна конвективной зоны! Глубже этого уровня Солнце вращается недифференциально, почти как твердое тело. Метод позволил восстановить траектории крупномасштабных потоков плазмы в недрах конвективной зоны.
Важный вывод – уточнение концентрации гелия на Солнце. Выше было указано, что спектральные методы не позволяют это сделать непосредственно. Но это можно сделать с помощью гелиосейсмологии! Дело в том, что по мере погружения в недра Солнца температура растет (гелиосейсмологи помогли показать, как именно). С ростом температуры увеличивается степень ионизации гелия. Рост давления с глубиной также увеличивает степень ионизации гелия, что, в свою очередь, немного уменьшает упругость вещества. Акустические волны, проходя сквозь эти слои, из-за этого немного меняют свои свойства – скорость звука и частоту. Если зафиксировать этот эффект (что и было сделано!), по его величине можно рассчитать содержание гелия. Оказалось, что оно несколько меньше, чем это предсказывалось ранними вариантами стандартной модели: 23,5–26,5 % по массе вместо 27–29 %.
Таким образом, благодаря гелиосейсмологии был уточнен химический состав Солнца. В поверхностных слоях (в конвективной зоне) доля водорода – примерно 73,2 %, доля гелия – 24,8 %, а доля других элементов – 2 %. Этот состав остается таким же во всей конвективной зоне (здесь вещество активно перемешивается во всей толще). По мере погружения в лучистую зону доля водорода постепенно падает, доля гелия растет. В самом центре Солнца доля водорода падает до 35,5 %! Впрочем, надо заметить, что надежность метода уменьшается по мере приближения к центру светила.
Помимо выяснения многих параметров внутреннего строения Солнца, гелиосейсмология оказалась очень важным критерием для оценки правильности теорий Солнца. Не секрет, что проблема солнечных нейтрино в свое время вызвала к жизни массу альтернативных гипотез о природе светила. Гелиосейсмология, проникая в глубины нашей звезды, сразу отсекла целый ряд идей, которые оказались несовместимыми с полученными данными.
Большой вклад в развитие исследований в области гелиосейсмологии и в привлечение всеобщего внимания к этому методу внесли ученые Крымской астрофизической обсерватории под руководством выдающегося советского гелиофизика, академика Андрея Борисовича Северного (1913–1987).
В 1976 году сотрудники обсерватории, а затем и их коллеги из Бирмингемского университета в Англии опубликовали результаты сенсационных наблюдений обнаруженных глобальных пульсаций Солнца с периодом 160,1 минуты и амплитудой 20 километров. Амплитуда изменений скорости смещения поверхности составила всего около 0,5 м/с. В 1977 году те же колебания зафиксировали в Стэнфордском университете (США). В 1980 году открытие было независимо подтверждено франко-американской экспедицией, проводившей наблюдения в Антарктиде. На протяжении ряда лет колебания непрерывно регистрировались и в Крыму, и в Стэнфорде. Удивительным явлением была поразительная стабильность колебаний: их измеряли несколько лет подряд, были периоды, когда колебания не удавалось обнаружить, потом они возникали снова. Но фаза колебаний сохранялась с высокой точностью, как будто таинственный сверхстабильный генератор раскачивал все Солнце.