Редукция к абсурду (приведение к нелепости) – это рассуждение, показывающее ошибочность какого-то положения путём выведения из него абсурда, т.е. логического противоречия. Если из высказывания
Закон приведения к абсурду представляется формулой:
если (если
Приведение к нелепости, замечает математик Д. Пойа, имеет некоторое сходство с иронией, любимым приёмом сатирика: ирония принимает определённую точку зрения, подчёркивает её и затем настолько её утрирует, что в конце концов приводит к явному абсурду.
Частный закон приведения к абсурду представляется формулой:
если (если
Закон косвенного доказательства позволяет заключить об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечёт противоречие. Например: «Если из того, что 17 не является простым числом, вытекает как то, что оно делится на число, отличное от самого себя и единицы, так и то, что оно не делится на такое число, то 17 есть простое число».
Символически закон косвенного доказательства записывается так:
если (если не-
Законом косвенного доказательства обычно называется и формула:
если (если не
Закон Клавия характеризует связь импликации и отрицания. Он читается так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или, короче: высказывание, вытекающее из своего собственного отрицания, истинно. Или иначе: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание истинно. Например, если условием того, чтобы машина не работала, является её работа, то машина работает.
Закон назван именем Клавия – учёного-иезуита, жившего в XVI в., одного из изобретателей григорианского календаря. Клавий первым обратил внимание на этот закон в своём комментарии к «Геометрии» Евклида. Одну из своих теорем Евклид доказал, выведя из её допущения, что она является ложной.
Символически закон Клавия представляется формулой:
если не-
Из закона Клавия вытекает следующий совет, касающийся доказательства: если хочешь доказать
Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором. Последний утверждал, что истинно все то, что кому-либо приходит в голову. На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания: «Не все высказывания истинны». И значит, это отрицание, а не положение Протагора, на самом деле истинно.
Закон Клавия – один из случаев общей схемы косвенного доказательства: