2. Уточните и упростите условия работы автоматизированной системы управления (АСУ) при помощи алгебры логики: в противопожарных целях температура на объекте не должна превышать 40° С; для предупреждения перегрева объекта предлагается установить два вентилятора (малый и большой) и разработать АСУ, удовлетворяющую следующим условиям: при температуре ниже 20° С вентиляторы не работают, при температуре от 20° С до 30° С работает малый вентилятор, при температуре от 31° С до 36° С работает большой вентилятор, при температуре свыше 36° С работают оба вентилятора, а когда температура на объекте достигает 40° С, звучит сигнал тревоги — сирена.

<p id="bookmark229"><strong>В. Управленческое решение</strong></p>

Алгебра логики применяется для анализа управленческих решений. С ее помощью можно, например, найти противоречие в самом решении, установить, что решение противоречит другим решениям, ранее принятым.

Алгебра логики используется для упрощения формулировки управленческих действий, предписываемых решением.

Пусть управленческое решение устанавливает, что:

1) к патрульно-постовой службе могут привлекаться сотрудники наружной службы горрайоргана внутренних дел;

2) никто не может быть одновременно сотрудником наружной службы и оперативного подразделения, если он не привлекается к несению патрульно-постовой службы;

3) никто из личного состава оперативных подразделений не привлекается к патрульно-постовой службе.

Упростим это предписание[67], состоящее из трех суждений. Для этого обозначим класс сотрудников патрульно-постовой службы символом П, класс сотрудников наружной службы — А, класс сотрудников оперативного подразделения — Оn.

Запишем предписание следующим образом:

1) все П суть А, а в виде тождества — П • Ā= 0, т.е. класс П включается в класс А;

2) все, кто есть А и О суть П, А • Оn • П = 0;

3) никто из Оn не есть П, Оn • П = 0.

Затем преобразуем это предписание:

Если объединение двух классов равно 0, то каждый из этих классов равен 0, следовательно, П • А=0 и А • Оn =0.

Получаем предписание, тождественное исходному:

1) патрульно-постовая служба формируется из состава наружной службы;

2) никто из личного состава оперативных подразделений не может быть сотрудником наружной службы.

Полученное предписание проще исходного. Если управленческие решения являются сложными, то их упрощение может быть значительным.

<p id="bookmark230"><strong>С. Другие применения алгебры логики</strong></p>

1. Символическая логика, в том числе алгебра логики, широко применяется в кибернетике. Об отце символической логики Лейбнице Норберт Винер, сформулировавший основные идеи кибернетики, пишет: “Если бы мне пришлось выбирать в анналах истории наук святого — покровителя кибернетики, то я выбрал бы Лейбница. Философия Лейбница концентрируется вокруг двух идей, тесно связанных между собой: идеи универсальной символики и идеи логического исчисления.

Из этих двух идей возникли современный математический анализ и современная математическая логика. И как в арифметическом исчислении была заложена возможность развития ее механизации от абака и арифмометра до современных сверхбыстрых машин, так и в исчислении умозаключений Лейбница содержится в зародыше думающая машина. Сам Лейбниц, подобно своему предшественнику Паскалю, интересовался созданием вычислительных машин в металле. Поэтому совсем неудивительно, что тот же самый умственный толчок, который привел к развитию математической логики, одновременно привел к гипотетической или действительной механизации процессов мышления”[68].

2. Алгебра логики применяется при проектировании переключательных схем, являющихся элементами автоматизированных систем управления и вычислительных машин. При этом символ “•” интерпретируется как последовательное соединение переключателей, а символ “∨” — как параллельное. Например, формулам p • (q ∨ r) и р • q ∨ р • r соответствуют следующие схемы:

р = 1 — переключатель замкнут, р = 0 — разомкнут. Если в схеме имеются два (или более) переключателя р, то они могут быть замкнуты (или разомкнуты) только одновременно (именно поэтому они обозначаются одной и той же буквой).

По электрической цепи, изображенной на левой схеме, ток идет тогда и только тогда, когда он идет по цепи, изображенной на правой схеме, так как формулы р • (q ∨ r ) и р • q ∨ р • r — тождественные.

Символ интерпретируется как противоположное состояние переключателя, т.е. если р = 1, то p = 0, а если переключатель р замкнут, то -p разомкнут. Так, формуле р v -p соответствует схема:

По этой цепи ток идет всегда, так как р ∨ р = 1, т.е. если переключатель р разомкнут, то переключатель -р замкнут, и наоборот. Лампочка горит постоянно. Можно упростить схему, убрав оба переключателя.

Алгебра логики располагает средствами, позволяющими найти наиболее простую схему (например, содержащую наименьшее число переключателей) по сравнению с данной, но выполняющую те же функции, что и исходная.

Перейти на страницу:

Похожие книги