Гипотеза Ж. Ламарка о наследовании приобретенных признаков верна, пишет Животновский (34). Теоретически благоприобретенные изменения могут наследоваться путем воздействия на процесс ремонта и синтеза ДНК. Например, если животного кормить пищей с отсутствием какой-нибудь аминокислоты и резким преобладанием другой, то при синтезе белков начнутся ошибки. Хотя в целом белок будет иметь почти ту же конфигурацию, но накопление невидимых (т. е. расположенных вне энзиматических и регуляторных участков) конфирмационных изменений белка будет влиять на синтез белков, участвующих в воспроизводстве ДНК, ее репарации. Поэтому будут накапливаться приобретенные изменения, а затем и передаваться по наследству. Конечно, тут опять есть опасность соскальзывания на путь терминологических споров. Например, можно утверждать, что путем кормления стимулируется мутагенез. Более того, передача эпигенетических изменений потомству ― это в чистом виде наследование приобретенных признаков, лишь в новой терминологии. А передача по наследству черенками ― вегетативное размножение по Мичурину? Чем не наследование приобретенных признаков?
В последние годы появилось несколько наблюдений, которые делают позицию Лысенко в том стародавнем споре ещё более прочной. Примеров очень много, я приведу лишь некоторые из результатов, подтверждающих наследование приобретенных признаков.
Обнаружено, что умственные упражнения родителей могут сказаться на способностях их потомков. Фейг и его коллеги (153) использовали генетически неполноценных мышей, у которых отсутствовала способность к обучению. Если обычную лабораторную мышь поместить в клетку, к полу которой подведены электроды, и подвергнуть нескольким ударам тока, она запомнит опыт: угодив в установку повторно, начнет паниковать. А вот генетически неполноценные мыши вели себя в шоковой камере невозмутимо и на второй раз, и на третий, и на четвертый. Чтобы избавить мышей от врожденного недостатка, ученые принуждали их упражнять ум с самого рождения. Экспериментальные животные проводили все детство в отдельных клетках, куда исследователи подкладывали все новые и новые объекты, заставляя мышей приспосабливаться к меняющейся обстановке. Усилия не прошли даром — такого курса «умственной гимнастики» оказалось достаточно, чтобы генетически неполноценные животные перестали уступать в рассудительности своим обычным собратьям. Благотворный эффект от тренировок не ослабел даже к тому времени, когда у подопытных появилось потомство.
Тут-то ученых и ждал главный сюрприз. Хотя потомки мышей, чей ум исследователи пытались развить, продолжали носить в себе дефектные гены родителей, в электрошоковой камере они сразу вели себя как вполне полноценные мыши. Результат, которого первое поколение экспериментальных животных добивалось путем упорных тренировок, давался их потомкам без труда. А вот у мышей, не тренировавших ум смолоду, рождались такие же недалекие отпрыски.
Убедившись, что достижения мышей передаются потомкам, ученые решили выяснить, какую роль тут играет каждый из родителей. Биологи создавали пары из прошедших тренировку животных и их не напрягавших ум собратьев. Выяснилось, что потомство таких мышей наследовало достижения предков только по материнской линии. При том, что мамы подопытных Фейга выполняли необходимые упражнения еще в раннем детстве, когда не были беременны.
Недавно исследователи показали, что растения могут переписывать генетический код, который они наследуют от родителей, и возвращаться к таковому их бабушек и дедушек (208). При изучении конкретного сорта Кресс (Cress) растения Arabidopsis, который несет мутацию в обеих копиях гена, именуемого "горячая голова" (HOTHEAD) Р. Прюитт (Pruitt) и его коллеги (208) обнаружили, что, возможно, организмы обладают механизмом дублирования, который может обходить нездоровые генные последовательности их родителей и возвращаться к более здоровому генетическому коду, которым обладали их бабушка и дедушка или прабабушка и прадедушка.
На мутантных растениях лепестки и другие части цветка неправильно сращены вместе. Поскольку эти растения передают мутантный ген своим потомкам, обычная формальная генетика диктует, что те будут также иметь сросшиеся цветки. На практике не так: группа Прюитта выяснила в результате некоторого времени наблюдений, что около 10 % потомства имеют нормальные цветки. Расшифровав последовательности нуклеотидов в ДНК, исследователи показали, что это второе поколение растений переписало последовательность ДНК одного или обоих из их генов hothead. Они заменили неправильный код их родителей обычным кодом, которым обладали более ранние поколения. Сначала Пруитт задался вопросом, а не загрязнили ли посторонние семена или пыльца его растения? Но повторённые эксперименты исключили это, так же, как и возможность того, что некий другой ген дублировал hothead и хитро маскировал действие гена некорректного.