3. Образование из выростов плазматической мембраны.
Сейчас 3 гипотеза стала доминирующей.
Один из возможных сценариев образования эндоплазматического ретикулума, а затем и ядерной оболочки состоит в следующем. Предшественники эукариотов были близки к бактериям. В прокариотах молекулы ДНК прикреплены к плазматической мембране. Предположим, что в прокариоте или в предшественнике появилась молекула, которая при внедрении в бислой липидов плазматической мембране вызывает его изгибание и образование инвагинаций. Анализ филогенеза так называемых малых ГТФаз показал, что наиболее древней из них является Сар1 п. Сар1 п может как малая ГТФаза (фермент, гидролизующий гуанидин трифосфат) присоединяться к внутренней поверхности плазматической мембраны и вызывать ее изгиб и образование выростов, направленных внутрь (178).
При этом происходила сортировка лидидов. Наличие митохондрий ведет к возможности образования стеролов и вытеснению гибкой мембраны внутрь клетки. Те, которые легко изгибаются, будут концентрироваться в мембране инвагинации, а те, которые не очень гнутся, будут оставаться на плазматической мембране. Молекулы ДНК могут концентрироваться в тех доменах липидов, которые более гибкие, то есть в инвагинациях. Те же липиды, которые более резистентны к действию внешней среды будет концентрироваться на гладкой мембране. Подобные промежуточные формы прокаритотов найдены среди бактерий. Они имею обширные инвагинации, и ДНК прикреплена именно к этим инвагинациям, а не окружающей клетку плазматической мембране. Устье перекрыто полисахарами. Тем самым появляется возможность разделить функции синтеза белка и его транспорта через мембрану наружу (178).
К выростам присоединялась ДНК. Та же гибкая мембрана забирала в себя поры, образованные комплексом белков и пронизывающие плазматическую мембрану. Богатая холестеролом мембрана все это вытесняла. То есть эндоплазматическая сеть есть производное внутренних инвагинаций плазматической мембраны. Найдены бактерии с подобными мембранными структурами внутри цитоплазмы. При этом пространство внутри мембран, окружающих аналог ядерной оболочки, соединяется с пространством между двумя мембранами, окружающими клетку (155, 192). Небольшой, способный гидролизовать молекулы ГТФ, белок субкомплекса ядерной поры имеет филогенетическую связь с субъединицами КОП1 и КОП2 и клатрина (178).
Эукариотический ядерный геном является химерным (то есть составленным из частей разных организмов) с самого начала. В нем смесь имеется генов архейного и бактериального происхождения, которые объединились на ранних этапах становления эукариотической клетки. Затем большинство генов предков митохондрий ― альфа-протеобактерий и предков пластид — цианобактерий ― переместились в ядерный геном в ходе процесса симбиогенеза.
Нуклеоплазма эукариот сочетает в себе признаки архей и бактерий, а также имеет множество уникальных особенностей, которых нет у современных прокариот. Нуклеоплазма эукариот, по-видимому, представляет собой химерное образование. Ее центральные блоки имеют преимущественно архейное происхождение, а значительная часть «периферии» ― бактериальное. Видимо, многие гены митохондрий переместились в ядро, а белки, ими кодируемые, стали работать в цитоплазме. Однако, как выяснилось, в нуклеоцитоплазме присутствует довольно много «бактериальных» доменов, не характерных ни для цианобактерий (предков пластид), ни для альфа-протеобактерий (предков митохондрий). У эукариот имеются ядерные гены, кодирующие цитоплазматические белки, но по последовательностям нуклеотидов близкие к генам протеобактерий (предков митохондрий). Это говорит о том, что симбиоз митохондрий внутри эукариотических клеток сыграл более важную роль в формировании эукариотической клетки, чем ранее предполагалось. Многие изначально «митохондриальные» гены были адаптированы для выполнения функций в ядре и цитоплазме.
После того, как сформировалась ядерная оболочка, следующим возникла малая ГТФ-аза, ответственная за образование ядерных пор. Это ещё одно свидетельство в пользу подобной гипотезы. Затем возникла необходимость отделить пространство внутри эндоплазматической сети и ядерной оболочки от внешней среды и появился КОП1, жесткий комплекс белков, специализирующийся на разрушении мембранных трубочек.
Согласно ведущей гипотезе образования эукариотов, первый эукариот возник как организм, поедающий другие организмы. Он уже имел все органеллы, присущие нынешним эукариотам: митохондрии, ядро, эндоплазматическая сеть, аппарат Гольджи … Предок эукариотов, скорее всего, имел плазматическую мембрану со складками (178), что и позволило ему захватить в свою цитоплазму бактерии, которые потом превратились в митохондрии.