Вообще-то ничего сверхъестественного в нескрещивании нет. Чтобы разойтись в мейозе в разные гаметы гомологичные хромосомы (одинаковые, но одна от мамы, а другая от папы) должны найти друг друга и спариться. Делают они это при помощи гомологической рекомбинации. Их в мейозе слегка нарезают на кусочки и, чтобы починиться, кусочки эти ищут в геноме последовательность ДНК идентичную той, что была в месте разрыва. Находят ее, естественно, на гомологичной хромосоме. Используют ее, как матрицу, чтобы починиться, тем самым и спариваются. А заодно кусками обмениваются.

Если хромосома, например, как следует "побита" рентгеном, куски вырваны и вшиты назад задом наперед, или не в то место где раньше были, — пишут в Интернете — то спариться такая побитая хромосома с исходной не может. Поэтому она и ее гомолог разойдутся в гаметы случайным образом. Если такая хромосома одна, то в половине случаев обе гаметы получат по копии. Если таких хромосом 23 вероятность снабдить гамету полным набором хромосом ничтожно мала и потомство от скрещивания разных видов, различающихся перетасовками в нескольких хромосомах, становится бесплодным.

То есть хромосомы — это ещё один ограничитель видов. Однако хромосомные проблемы преодолеваются. Нескрещиваемость близких видов можно обойти путем увеличения кратности набора хромосом, увеличением плоидности. Например, если сделать тетраплоидность, то можно скрещивать виды, но как все это будет развиваться, зависит… После полиплоидизации, если удается найти такую комбинацию разделения и спаривания хромосом, что гены-аллели становятся комплементарны, то может образоваться новый вид.

Так, скрещивается редька с капустой если у них предварительно индуцировать полиплоидизацию того и другого. При этом набор хромосом может быть удвоен с помощью колхицина. Если включаются мобильные элементы, то возможна комбинация перераспределения генов, когда в каждой хромосоме есть партнер, с которым она может спариться в мейозе и правильно разойтись в гаметы. И наоборот, все что нужно, чтобы особи перестали скрещиваться — несколько хромосомных перестроек, чтобы бывшие гомологичные хромосомы не могли спариваться в мейозе. Если они не могут спариться, то и правильно разойтись в гаметы при мейозе не могут.

Как пишут на Интернет-форумах, "для каждой хромосомы дрозофилы созданы специальные хромосомы "противовесы", перетасованные достаточно сильно чтобы не спариваться и не рекомбинировать с диким гомологом. Хромосомы-"противовесы" используются для поддержания коллекций летальных мутаций. В нормальной хромосоме коллекционная летальная мутация, в хромосоме — "противовесе" другая летальная мутация. Потомство жизнеспособно только если получило коллекционную хромосому и хромосому противовес. Две коллекционные хромосомы — смерть. Два противовеса — смерть. А рекомбинация, в которой могла бы возникнуть хромосома, очищенная от обеих летальных мутаций не происходит. Все что нужно чтобы собрать новый "вид" дрозофилы, который не будет скрещиваться с диким — убрать из хромосом-противовесов летальные мутации и собрать муху заменив все дикие хромосомы противовесами. Причем по фенотипу эта дрозофила не будет отличаться от дикой совсем".

Итак, каждый критерий в отдельности недостаточен для определения вида, но в совокупности они позволяют точно выяснить видовую принадлежность живого организма. Вид — это классификация, где основой сейчас является генетическая совместимость. Поэтому по отношению к бактериям границы видов относительны. Поэтому их называют штаммами. Для вирусов также имеется лишь очень грубая классификация видов.

<p>12.4. ГИПОТЕЗЫ ЭВОЛЮЦИИ</p>
Перейти на страницу:

Поиск

Похожие книги