Итак, пусть окружность разделена на 5 равных частей. Соединяя последовательно точки деления, получим правильный пятиугольник, диагонали которого образуют пятиконечную звезду. Легко видеть, что внутри этой звезды вновь образуется правильный пятиугольник, диагонали которого дают новую звезду, и т. д. Рассмотрим равнобедренный треугольник ABC, в котором ∠A = 36°, ∠B = ∠С = 72° (как вписанные в окружность углы, опирающиеся на дуги в 72° (360°: 5) и 144° соответственно). Но ABCD = 36°, поэтому CD является биссектрисой в треугольнике ABC и отсекает от него ΔBCD ∞ ΔАВС. Из подобия этих треугольников имеем АВ:ВС=ВС:DB (рис. (а) на с. 206). Учитывая, что ВС = CD = AD, приходим к пропорции

(15.1)

т. е. "целое" (АВ) так относится к большей части (AD), как большая часть к меньшей (DB). Иначе говоря, точка D делит отрезок АВ в золотом сечении.

Точное деление окружности на 5 равных частей, описанное в 'Альмагесте' Птолемея. Ок 150 до н. э. (а). Приближенное построение пятиугольника по заданной стороне из 'Руководства к измерению' Дюрера 1525 (б). Цифрами обозначены последовательные положение ножки циркуля

Принимая сторону исходного правильного пятиугольника за единицу AF = AD = 1, полагая DB = x и, следовательно АВ = 1 + х, из (15.1) приходим к уравнению (12.1) при а = 1:

которое имеет единственный положительный корень

Поскольку

(проверьте это), то мы окончательно находим: x = DB = AE = EF =...= φ, AD = DC = CB = AF = ... = 1, ED = EG = ...= = 1 — φ = φ2.

Ряд золотого сечения 1, φ, φ2, φ3, ... в последовательности звездчатых пятиугольников (а) и звездчатых десятиугольников (б)

Повторяя наши рассуждения для треугольника DGH, в котором DG = y, легко видеть, что стороны внутренней звезды будут равны φ3, а стороны ее внутреннего правильного пятиугольника — φ4. И т. д.

Таким образом, последовательность правильных пятиугольников и вписанных в них звезд образует ряд золотого сечения (12.4) при а=1:

причем стороны правильных пятиугольников образуют ряд четных степеней:

а стороны звезд — ряд нечетных степеней:

Наконец, если продолжить стороны правильного пятиугольника до пересечения, то получим звезду, сторона которой х находится со стороной исходного пятиугольника AF = 1 в золотом отношении, т. е. 1/х = φ ⇒ 1/φ = (√5 + 1)/2 = Φ

Итак, ряд золотого сечения можно неограниченно продолжить и в сторону увеличения, и в общем виде ряд золотого сечения будет иметь вид

или

(15.2)

Ряд (15.2) является геометрической прогрессией со знаменателем Ф. Однако из бесконечного множества геометрических прогрессий ряд (15.2) отличается уникальным свойством, называемым аддитивным свойством: сумма двух соседних членов ряда равна следующему члену ряда:

В самом деле, поскольку 1 + Φ = Φ2 (проверьте это), то

(15.3)

Именно благодаря аддитивному свойству ряд золотого сечения играет важную роль в архитектуре, о чем мы подробнее поговорим чуть позже. А пока заметим, что вместо ряда (15.2) удобнее рассматривать две его "половинки":

возрастающую геометрическую прогрессию со знаменателем Φ≈1,618033988:

(15.4)

и убывающую геометрическую прогрессию со знаменателем φ = Φ-1≈0,618033988:

(15.5)

Аддитивное свойство ряда (15.5) прекрасно иллюстрируется последовательностью вписанных друг в друга правильных пятиугольников и пятиконечных звезд (см. с. 206): AD = AE + ED (1 = φ + φ2), DG = DK + KG (φ = φ2 + φ3) и т. д.

Итак, правильный пятиугольник и пятиконечная звезда, образованная его диагоналями, обладают массой интересных свойств:

1. Пересекающиеся диагонали правильного пятиугольника делят друг друга в золотой пропорции

2. Сторона правильного пятиугольника, сторона вписанной в него пятиконечной звезды и сторона образованного звездой внутреннего пятиугольника также относятся в золотой пропорции

3. Стороны правильных пятиугольников и вписанных в них звезд образуют ряд золотого сечения (15.5), который является бесконечно убывающей геометрической прогрессией со знаменателем ф и обладает аддитивным свойством (φn = φn+1 + φn+2, n = 0, 1, 2, ...).

4. Отрезки пятиконечной звезды АВ = Φ, AD = 1, АЕ = φ и ED = φ2 связаны между собой всеми видами "древних" средних (5.1), а именно:

— арифметическое среднее;

— геометрическое среднее;

— гармоническое среднее.

В общем случае для четырех последовательных членов ряда (15.5) φn, φn+1, φn+2, φn+3 нетрудно доказать справедливость соотношения

5. Из всех равнобедренных треугольников только треугольник, у которого углы при основании (72°) вдвое больше угла при вершине (36°), обладает особым свойством: биссектриса угла при основании делит противоположную сторону в золотом сечении. Такой треугольник (например, ΔАВС на с. 206) получил название "возвышенного".

Перейти на страницу:

Похожие книги