20 лет спустя немецкий физик, психолог, философ и писатель Густав Фехнер (1801 -1887) математически обработал результаты экспериментов Вебера, т. е. на языке математики записал факт, установленный Вебером: приращение интенсивности ощущения dE пропорционально относительному приращению силы раздраения dR/R

(18.1)

здесь а — коэффициент пропорциональности. Получилось простейшее дифференциальное уравнение, решая которое Фехнер нашел связь между интенсивностью ощущения Е и силой раздражения R, действующей на какой-либо орган чувств:

(18.2)

или

(18.3)

здесь R0 — сила начального раздражения.

Формулы (18.1) — (18.3) и есть математическое выражение основного психофизического закона — закона Вебера — Фехнера.

Согласно закону Вебера — Фехнера, для того, чтобы интенсивность ощущений Е нарастала в арифметической прогрессии, вызывающая их сила раздражения R должна нарастать в геометрической прогрессии

Что же мы можем извлечь из закона Вебера — Фехнера? Естественно предположить, что нам будет приятно, если наши ощущения в процессе восприятия музыки или архитектуры будут нарастать равномерно, т. е. в арифметической прогрессии. Положим Еn = Е0 + αn (n = 0, 1, 2, ...; α — разность арифметической прогрессии). Тогда согласно (18.3) вызывающая эти ощущения сила раздражения должна нарастать по закону

т. е. сила раздражения Rn должна нарастать в геометрической прогрессии со знаменателем q = eα/a.

Но ведь и гамма равномерно-темперированного строя (9.1), и ряд золотого сечения (15.4) или (15.5), и красная (17.2) и синяя (17.3) шкалы модулора Ле Корбюзье являются геометрическими прогрессиями! Следовательно, все эти "раздражители"- наших органов чувств обеспечивают равномерное возрастание (или убывание) наших ощущений. Таким образом, именно закон Вебера — Фехнера, скорее всего, и является тем математическим законом, который лежит в основе основ как музыки (музыкальная гамма), так и архитектуры (шкала пропорциональностей), той "математикой", которая связывает и музыку, и архитектуру!

Подтверждением этому могли бы стать экспериментальные значения коэффициента α/а, полученные в результате психофизических опытов. Поскольку для равномерно-темперированной гаммы q = = = 1,06, а для ряда золотого сечения q = 1,618 (q = eα/a), то легко находим: для музыкальной гаммы α/а = 0,058, а для ряда золотого сечения α/а = 0,482. Если эти значения совпадут с экспериментальными, то это и будет хотя бы в первом приближении объяснением, почему именно 12-ступенная гамма и золотое сечение в течение тысячелетий продолжают радовать наши слух, глаз и разум.

Насколько это справедливо, покажут будущие исследования. Хочется верить, что законы красоты все-таки будут разгаданы, и, памятуя традиции Баха и Моцарта (см. с. 149), закончить последнюю главу об архитектуре и музыке мажорным аккордом.

<p><strong>IV. Математика и живопись</strong></p>

Мне хочется, чтобы живописец был как можно больше сведущ во всех свободных искусствах, но прежде всего я желаю, чтобы он узнал геометрию.

Л. Б. Альберти

"Ну это уж слишком! — рассердится уставший читатель.- Да, архитектура — наполовину наука, наполовину искусство, и потому "математическое начало" в ней естественно. Да, музыка слагается из колебаний среды и, следовательно, подчиняется законам акустики, которая полностью математизирована. Но какая математика нужна художнику, которому, кроме холста и красок, вообще ничего не нужно!? Примером "математики в живописи" может служить разве что картина Богданова-Бельского "Устный счет"!"

В этой части книги мы попытаемся убедить сердитого читателя в том, что он глубоко не прав.

Раздел называется "Математика и живопись", хотя, быть может, правильнее его следовало бы назвать "Математика и изобразительные искусства". Последние, как известно, объединяют живопись, скульптуру и графику. Тем не менее речь в этом разделе пойдет прежде всего о живописи: с одной стороны, потому, что живопись является ведущей составляющей изобразительного искусства, а с другой — потому, что именно в живописи заключены основные математические проблемы изобразительного искусства.

К сожалению, говоря о живописи, мы оставим в стороне ее основное изобразительное средство — цвет. Причин тому две: во-первых, ограниченные размеры книги, а во-вторых, сложность проблемы. Вопрос о цветовой гамме — совокупности взаимосвязанных цветов и их оттенков, "эстетике цвета" и "математике цвета" — во многом остается загадочным. Между тем еще Ньютон, разложивший солнечный свет на семь цветовых составляющих, заметил, что частоты v границ цветов солнечного спектра относятся как частоты самой симметричной фригийской гаммы чистого строя (8.8):

Перейти на страницу:

Похожие книги