Теплостойкость. Для инструментального материала она определяется наивысшей температурой, при которой он сохраняет свои режущие свойства. Теплостойкость применяемых инструментальных материалов составляет от 200 до 1500о С. По степени убывания теплостойкости материалы располагаются в следующем порядке: сверхтвердые, режущая керамика, твердые сплавы, быстрорежущие, легированные, углеродистые стали. Даже при воздействии в течении долгого времени температур высокие жаропрочные свойства должны оставаться на прежнем уровне. Металл горячих штампов должен оказывать устойчивое сопротивление отпуску.

Жаропрочность – это способность стали сопротивляться механическим нагрузкам при высоких температурах. К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение длительного времени. Жаропрочные стали обычно одновременно и жаростойкие.

Ползучесть – это деформация, увеличивающаяся под длительным действием постоянной нагрузки и высокой температуры. Для углеродистых и легированных конструкционных сталей ползучесть наблюдается при температурах выше 350 °C.

Ползучесть характеризуется пределом ползучести, под которым понимают напряжение, вызывающее деформацию стали на определенную величину за определенное время при заданной температуре.

Жаропрочные сплавы. Развитие жаропрочных никелевых сплавов началось с небольших добавок титана и алюминия к обычному нихрому. Добавление менее 2 % титана и алюминия без термической обработки заметно повышает показатели ползучести нихрома при температурах около 700 °C.

Жаропрочные никелевые сплавы подразделяют на деформируемые и литейные. Жаропрочные свойства деформируемых сплавов формируются при термической обработке. Литейные жаропрочные никелевые сплавы по составу сходны с деформируемыми, но обычно содержат большее количество алюминия и титана.

Хладостойкость – способность металла оказывать сопротивление деформации и разрушению, которые могут возникнуть под воздействием низких температур.

Электротехническая сталь является тонколистовой мягнитномягкой сталью. Из нее изготавливают сердечники электротехнического оборудования. В состав данной стали входит кремний. Различают холоднокатаную и горячекатаную электротехническую сталь, а также динамную и трансформаторную. Для легирования стали электротехнической используют 0,5 % Al.

Износостойкая сталь. Для деталей, работающих в условиях абразивного износа, высоких давлений и ударов (траки гусеничных машин, щеки дробилок, переводные стрелки железнодорожных и трамвайных путей), применяют высокомарганцевую литую сталь 110Г13Л аустенитной структуры, содержащую 0,9 % С и 11,5 % Мп.

В литом состоянии структура стали состоит из аустенита и карбидов типа (Ре, Мп)3С, выделяющихся по границам аустенитных зерен, и ее прочность и ударная вязкость сильно снижены, поэтому литые детали подвергают закалке с нагревом до 1100 °C и охлаждению в воде. При такой температуре карбиды растворяются в аустените и сталь приобретает более устойчивую аустенитную структуру.

В условиях ударного воздействия и абразивного изнашивания в поверхностном слое стали образуются дефекты кристаллического строения (дислокации, дефекты упаковки), что приводит к поверхностному упрочнению. Повышение твердости и износостойкости в результате наклепа возможно при ударных нагрузках и холодной пластической деформации.

Из-за наклепа сталь 110Г13Л плохо обрабатывается резанием, поэтому детали или изделия из данной стали целесообразно изготовлять литьем без последующей механической обработки. Буква Л в конце марки этой стали означает «литейная».

<p>43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов</p>

К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую стоимость. Иногда, когда это возможно, цветные металлы заменяют черными металлами или неметаллическими материалами (например, пластмассами).

Выделяют следующие группы цветных металлов и сплавов: легкие металлы и сплавы (с плотностью 3.0 г/см3); медные сплавы и специальные цветные сплавы – мельхиор, незильбер, драгоценные сплавы и т. д.

В промышленности по применению медь занимает одно из первых мест среди цветных металлов. Свойства меди – высокая пластичность, электропроводность, теплопроводность, повышенная коррозионная стойкость. Медь используется в электромашиностроении, изготовлении кабелей и проводов для передачи электроэнергии и служит основой для изготовления различных сплавов, широко применяемых в машиностроении.

Перейти на страницу:

Поиск

Похожие книги