Проведение нервного возбуждения становится возможным в результате специализации электрических свойств мембран живых клеток. Сигналы, поступающие через входные участки нейрона, вызывают эффекты (см. ниже), понижающие электрический потенциал протоплазмы в теле нейрона по сравнению с его нормальной величиной 70 милливольт. Это снижение потенциала распространяется на ближайший участок основания аксона. Если это снижение потенциала, или деполяризация, достигает достаточной величины, то аксон проявляет интересную, лишь ему свойственную особенность: происходит электрический «пробой» его оболочки. Точнее говоря, уменьшение его внутреннего потенциала с 70 до 60 милливольт ведет к внезапному изменению проницаемости мембраны, отделяющей протоплазму аксона от окружающей жидкости. В результате этого изменения наружные ионы натрия, которые ранее не могли пройти через мембрану, устремляются внутрь аксона, тогда как избыток внутренних ионов калия выходит наружу. Суммарный электрический эффект этого перемещения ионов состоит в резком изменении внутреннего потенциала в том участке аксона, где происходит «пробой»: нормальная величина ( 70 милливольт) сменяется слегка положительной величиной по отношению к окружающей жидкости. Вначале это чисто локальное явление, происходящее только у основания аксона. Однако возникающая при этом разность потенциалов между участком «про-боя» и соседней протоплазмой вызывает перемещение ионов, которое быстро приводит к деполяризации соседнего участка аксона, достаточной для того, чтобы вызвать «пробой» и в этом участке; при этом возникает ток, деполяризующий следующий участок аксона, и т. д. Таким образом импульс деполяризации, или потенциал действия, распространяется вдоль аксона. Это и есть тот нервный импульс типа «все или ничего», который со времени его открытия составлял загадку для нейрофизиолога.

Одно из свойств потенциала действия, имеющих первостепенное значение,— это скорость распространения. Она находится в сложной зависимости от химических и электрических свойств аксона и окружающей жидкости, а также от толщины аксона. Вообще нервные импульсы распространяются быстро по волокнам большей толщины и медленно—по тонким волокнам. В организме человека одни сигналы движутся со скоростью пешехода (3—4 километра в час, или 1 метр в секунду), другие — быстрее гоночного автомобиля (более 300 километров в час, или 100 метров в секунду).

Еще одна важная особенность передачи импульса по аксону состоит в том, что он нисколько не ослабевает при своем движении по нервному волокну. Когда это свойство было впервые открыто, казалось весьма удивительным, что нервный импульс, проходя расстояния, в тысячи раз большие, чем диаметр проводящего волокна, прибывает к месту назначения таким же. каким он покинул тело породившего его нейрона. Сейчас мы видим в этом естественное следствие феномена распространения электрического «пробоя», при кото ром импульс эффективно возобновляется на каждом этапе своего продвижения. Энергия, необходимая для такой последовательной регенерации, первоначально образуется за счет различий в концентрации ионов натрия и калия внутри и вне аксона; эти различия в свою очередь являются результатом химических метаболических процессов, постоянно идущих на всем протяжении аксона, которые восстанавливают и поддерживают электрохимические условия в клетке, находящейся в состоянии покоя.

Возвращение протоплазмы аксона к нормальному состоянию равновесия после прохождения потенциала действия имеет фундаментальное значение для нервных механизмов. Аномальная проницаемость мембраны, лежащая в основе прохождения импульса по аксону, — явление весьма кратковременное; нормальные характеристики мембранной проницаемости и обычная величина электрической поляризации восстанавливаются всего лишь за одну или две тысячные секунды. К тому моменту, когда участок аксона вновь приобретает способность к возбуждению, потенциал действия уже проходит расстояние, во много раз превосходящее диаметр аксона, и находится слишком далеко, чтобы вызвать повторный разряд в восстановившей свою возбудимость цитоплазме. В результате нервный импульс всегда распространяется в одном направлении — он удаляется от тела нейрона.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже