Техническое применение современной естественной науки начинается со знания конкретных деталей. В результате и понятие "закон природы" постепенно меняет свое значение. Центр тяжести находится теперь не во всеобщности, а в возможности делать частные заключения. Закон превращается в программу технического применения. Важнейшей чертой закона природы считается теперь возможность делать на его основании предсказания о том, что получится в результате того или иного эксперимента.
Легко заметить, что понятие времени должно играть в таком естествознании совершенно другую роль, чем в античной философии. В законе природы выражается не вечная и неизменная структура - речь идет теперь о закономерности изменений во времени. Когда подобного рода закономерность формулируется на математическом языке, физик сразу же представляет себе бесчисленное множество экспериментов, которые он мог бы поставить, чтобы проверить правильность выдвигаемого закона [26]. Одно-единственное несовпадение теории c экспериментом могло бы опровергнуть теорию. В такой ситуации математической формулировке закона природы придается колоссальное значение. Если все известные экспериментальные факты согласуются c теми утверждениями, которые могут быть математически выведены из данного закона, сомневаться в общезначимости закона будет чрезвычайно трудно. Понятно поэтому, почему "Principia" Ньютона господствовала в физике более двух столетий.
26 Неустранимая "двуязычность", двухмерность физической теории, в которой конструктивные интуиции математического языка дополняются понятийными ин-туициями языка естественного (лучше сказать культурного), глубокая и мало продуманная особенность теоретического мышления математической физики. Уяснение физического смысла предполагает не только математическое конструирование понятий и их экспериментальную интерпретацию, но и философский анализ смысла. По этому поводу см. главу "Дисциплина чистого разума" в разделе "Трансцендентальное учение о методе" кантовской "Критики чистого разума" (см.: Кант И. Соч.: В 6 т. М., 1964. Т. 3. c 597 - 617. См. также статью В. Гейзенберга "Язык и реальность в современной физике").
Прослеживая историю физики от Ньютона до настоящего времени, мы заметим, что несколько раз - несмотря на интерес к конкретным деталям формулировались весьма общие законы природы. В XIX веке была детально разработана статистическая теория теплоты. К группе законов природы весьма общего плана можно было бы присоединить теорию электромагнитного поля и специальную теорию относительности, включающие высказывания не только об электрических явлениях, но и о структуре пространства и времени. Математическая формулировка квантовой теории привела в нашем столетии к пониманию строения внешних электронных оболочек химических атомов, а тем самым и к познанию химических свойств материи. Отношения и связи между этими различными законами, в особенности между теорией относительности и квантовой механикой, еще не вполне ясны, но последние события в развитии физики элементарных частиц внушают надежду на то, что уже в относительно близком будущем эти отношения удастся проанализировать на удовлетворительном уровне. Вот почему уже сейчас можно подумать о том, какой ответ на вопросы древних философов позволяет дать новейшее развитие науки.
Развитие химии и учения о теплоте в течение XIX века в точности следовало представлениям, впервые высказанным Левкип-пом и Демокритом. Возрождение материалистической философии в форме диалектического материализма вполне естественно сопровождало впечатляющий прогресс, который переживали в ту эпоху химия и физика. Понятие атома оказалось крайне продуктивным для объяснения химических соединений или физических свойств газов. Вскоре, правда, выяснилось, что те частицы, которые химики назвали атомами, состоят из еще более мелких единиц. Но и эти более мелкие единицы - электроны, а затем атомное ядро, наконец, элементарные частицы, протоны и нейтроны, - на первый взгляд кажутся атомарными в том же самом материалистическом смысле. Тот факт, что отдельные элементарные частицы можно было реально увидеть хотя бы косвенно (в камере Вильсона, или в пузырьковой камере), подтверждал представление о мельчайших единицах материи как о реальных физических объектах, существующих в том же самом смысле, что и камни или цветы.