Сеть Хопфилда (см. рис. 8) - это математическая модель нейронов, которая может реализовать то, что Хопфилд назвал "памятью с возможностью адресации содержимого". Этот термин, пришедший из компьютерных наук, относится к понятию, что полную память можно извлечь из небольшого ее компонента. Сеть, которую Хопфилд создал для этой задачи, очень просто устроена. Она состоит только из бинарных нейронов (таких, как нейроны Маккаллоха-Питтса, представленные в прошлой главе), которые могут быть либо "включены", либо "выключены". Поэтому именно взаимодействие между этими нейронами и приводит к интригующему поведению этой сети.

Сеть Хопфилда является рекуррентной, то есть активность каждого нейрона определяется активностью любого издругих нейронов сети. Поэтому активность каждого нейрона служит как входом, так и выходом для его соседей. В частности, каждый входной сигнал, получаемый нейроном от другого нейрона, умножается на определенное число - синаптический вес. Затем эти взвешенные входы суммируются и сравниваются с пороговым значением: если сумма больше (или равна) пороговому значению, уровень активности нейрона равен 1 ("включен"), в противном случае - 0 ("выключен"). Этот выход затем поступает на вход других нейронов в сети, чьи выходы снова поступают на вход других нейронов, и так далее, и так далее.

Подобно телам в мош-пите, компоненты рекуррентной системы толкают и тянут друг друга, причем состояние единицы в любой момент времени определяется теми, кто ее окружает. Таким образом, нейроны в сети Хопфилда подобны атомам железа, постоянно влияющим друг на друга посредством магнитных взаимодействий. Эффекты этого непрерывного взаимодействия могут быть огромными и сложными. Предсказать, какие закономерности создадут эти взаимосвязанные части, практически невозможно без точной математической модели. Хопфилд был хорошо знаком с этими моделями и их способностью показать, как локальные взаимодействия приводят к возникновению глобального поведения.

Хопфилд обнаружил, что при правильном выборе весов между нейронами в его сети сеть какможет реализовать ассоциативную память. Чтобы понять это, мы должны сначала определить, что считается памятью в этой абстрактной модели. Представьте, что каждый нейрон в сети Хопфилда представляет один объект: нейрон A - это кресло-качалка, нейрон B - велосипед, нейрон C - слон и так далее. Чтобы представить конкретное воспоминание, скажем, о вашей детской спальне, нейроны, представляющие все объекты в этой комнате - кровать, ваши игрушки, фотографии на стене, - должны быть "включены"; в то время как нейроны, представляющие объекты не в этой комнате - луну, городской автобус, кухонные ножи, - должны быть "выключены". Таким образом, сеть в целом находится в состоянии активности "спальня вашего детства". Другое состояние активности - с разными наборами нейронов "включено" или "выключено" - будет представлять собой другое воспоминание.

В ассоциативной памяти небольшой вход в сеть реактивирует целое состояние памяти. Например, если вы увидите свою фотографию на кровати в детстве, это может активировать некоторые нейроны, представляющие вашу спальню: нейроны кровати, нейроны подушки и т. д. В сети Хопфилда связи между этими нейронами и нейронами, представляющими другие части спальни - шторы, игрушки, письменный стол, - заставляют эти нейроны активизироваться, воссоздавая полное ощущение спальни. Отрицательно взвешенные связи между нейронами спальни и нейронами, представляющими, скажем, местный парк, гарантируют, что в память спальни не проникнут другие предметы. Таким образом, вы не запомните качели рядом с вашим шкафом.

Когда одни нейроны включаются, а другие выключаются, именно их взаимодействие делает полную память более рельефной. Таким образом, тяжелую работу по восстановлению памяти выполняют синапсы. Именно сила этих связей выполняет грозную, но деликатную задачу восстановления памяти.

Перейти на страницу:

Похожие книги