Готовясь ко сну, я слышала, как в квартире шуршат крысы. Esse est percipi. Esse est percipi. Я повторяла эту фразу как заклинание, надеясь, что она поможет преобразовать онтологически значимую крысу в невесомую мысль, и я смогу наконец выспаться. Возможно, агент по недвижимости собиралась мне сказать, что квартира была современной и субъектно-обусловленной. Я успокаивала себя тем, что должна принимать любое живое создание, поскольку их существование – не более чем пессимистическая индукция. Cogito ergo крыс. Может быть, проблема в каких-то неизвестных программистах. Может быть, эти странные звуки – глюк симуляции. Или, может быть, папа был прав, и тут не обошлось без квантовых флуктуаций, внезапной материализации грызунов из пенящегося вакуума. Может быть, если бы я не начала наблюдать за ними, они бы не материализовались, оставшись в подвешенном состоянии, наполовину реальные, наполовину иллюзия. Крысы Шрёдингера.

Но наутро ловушки были пусты.

У Джона Уоррола был исключительно благостный вид. Он, казалось, специально создан, чтобы улаживать межклановые распри в академической среде или вдруг стать солистом эпистемологической рок-группы, называющейся «Критика чистого ритма». В начале своей карьеры он занимался статистикой, но затем Карл Поппер, основавший здесь отдел философии науки, соблазнил его занятиями философией. В 1989 году Уоррол опубликовал статью в журнале Dialectica, в которой предлагал компромисс между реализмом и антиреализмом. Свою идею он назвал структурным реализмом и утверждал, что она впитала в себя все самое лучшее из обоих миров: она могла объяснить успехи науки без апелляции к чуду и одновременно объясняла пессимистический прогресс от одной неверной теории к следующей.

Проблема состоит в том, объяснял Уоррол, что реалисты были реалистами в отношении не тех вещей, каких надо. На самом деле, в «вещах» и заключена вся проблема. Реалисты говорили о реальном мире, не зависящем от сознания, состоящем из каких-то реальных вещей – атомов, столов, крыс. Но если вы посмотрите внимательно, научные теории вовсе не о «вещах». Они о математических структурах.

Математическая структура – это множество изоморфных элементов, каждый из которых может быть отображен в другой. Выражения 25 и 52 или 27–2 принадлежат одной и той же математической структуре. Структура – это не какое-то конкретное число, а весь набор эквивалентных представлений этого числа, это монолитная единая сущность, скрывающаяся во множестве различных явлений. Множества более фундаментальны, чем сами числа.

«Вся математика – всякая структура – сводится к множествам?» – записала я в свою записную книжку. Я читала где-то, что все множество чисел может быть построено из пустого множества: множества, не содержащего никаких элементов. Пустое множество ничего не содержит. Ноль. Но множество, содержащее пустое множество, уже не пусто. Оно содержит один элемент – пустое множество. Это – число 1. Оно не просто равно 1, а прямо-таки определяет число 1. Дальше: множество, которое содержит пустое множество и множество, содержащее пустое множество, – это 2. И так до бесконечности. То есть до пустоты.

Числовая прямая – ничто иное, как ряд вложенных множеств, в скрытом центре которой ничто. Уоррол сказал, что физика причастна математической структуре. Теория множеств говорит, что математические структуры причастны пустоте.

Мысль, что числовая прямая строится из пустого множества, – это ловкий трюк, или из нее можно вывести какое-то важное знание о Вселенной? Она рассказывает нам, как ничто превратить в нечто? Взять его в скобки. Очертить границы. Чтойность возникает в результате изменения точки зрения. От «внутри» к «снаружи».

Я не совсем была уверена, как можно применить этот урок к чему-то вроде Вселенной, к чему-то, у чего никакого «снаружи» нет. К односторонней монете, к однобокому предмету. Как это применить? Даже если бы вы знали как, то вы бы все равно столкнулись с парадоксом Рассела. Брадобрей бреет любого человек, который не бреется сам, – так кто бреет самого брадобрея? Если он бреет сам себя, то он не бреет себя, а если нет, то таки да. Речь не о растительности на лице. Речь о парадоксах, которые возникают, если множества могут содержать себя. Если вы смотрите из-за скобок и попытаетесь засунуть увиденное внутрь.

Перейти на страницу:

Все книги серии Corpus

Похожие книги