Третью определенность представляет собой, наконец, равенство определенного множества и единства. Сочетание определенных так чисел есть возведение в степень и ближайшим образом – возведение в квадрат. Дальнейшее возведение в степень есть формальное продолжение умножения числа на само себя неопределенное количество раз. Так как в этом третьем определении достигнуто полнейшее равенство единственного имеющегося различия (множества и единства), то не может быть больше арифметических действий, чем эти три. Сочетанию чисел соответствует разложение чисел, согласно тем же определенностям. Поэтому наряду с тремя указанными действиями, которые могут быть названы положительными, существуют также и три отрицательных действия.

Прибавление. Так как число есть вообще определенное количество в его полной определенности, то мы пользуемся им для определения не только так называемых дискретных величин, но также и для так называемых непрерывных величин. Приходится поэтому также и в геометрии прибегать к помощи числа в тех случаях, в которых дело идет об указании определенных пространственных конфигураций и их отношений.

<p>с. Степень</p>§ 103

Граница тождества с целым самого́ определенного количества; как многообразное в себе, она есть экстенсивная величина, но как в себе простая определенность, она есть интенсивная величина, или степень.

Примечание. Отличие непрерывных и дискретных величин от экстенсивных и интенсивных состоит в том, что первые относятся к количеству вообще, а вторые – к границе, или определенности количества, как таковой. Экстенсивные и интенсивные величины также не суть два особых вида, каждый из которых содержит в себе определенность, которой нет в другом. То, что есть экстенсивная величина, есть столь же и интенсивная величина, и наоборот.

Перейти на страницу:

Все книги серии Азбука-Классика. Non-Fiction

Нет соединения с сервером, попробуйте зайти чуть позже