Определенное количество – ближайшим образом количество с некоторой определенностью или границей вообще – есть в своей совершенной определенности число. Определенное количество дифференцируется (unterscheidet sich), во-вторых, прежде всего на экстенсивное определенное количество, в котором граница дана (ist) как ограничение налично сущего множества, а затем, когда это наличное бытие переходит в для-себя-бытие, на интенсивное определенное количество, градус[47], которое, как «для себя» и в последнем как безразличная граница, столь же непосредственно оказывается вне себя, имеет свою определенность в некотором другом. Как это положенное противоречие, состоящее в том, что оно, таким образом, просто определено внутри себя и вместе с тем имеет свою определенность вне себя и отсылает за ней вне себя, определенное количество, в-третьих, как в самом себе внешне положенное, переходит в количественную бесконечность.

<p>А. Число</p>

Количество есть определенное количество или, иначе говоря, обладает границей и как непрерывная, и как дискретная величина. Различие этих видов пока что не имеет здесь никакого значения.

Количество как снятое для-себя-бытие уже само по себе безразлично к своей границе. Но тем самым ему также и не безразлично то обстоятельство, что оно имеет границу или, другими словами, что оно есть некоторое определенное количество; ибо оно содержит внутри себя одно, абсолютную определенность, как свой собственный момент, который, следовательно, как положенный в его (количества) непрерывности или единице есть его граница, остающаяся, однако, одним, которым она теперь вообще стала.

Это одно есть, стало быть, принцип определенного количества, но одно как количественное одно. Благодаря этому оно, во-первых, непрерывно, оно есть единица; во-вторых, оно дискретно, представляет собою в-себе-сущее (как в непрерывной величине) или положенное (как в дискретной величине) множество одних, которые одинаковы друг с другом, обладают вышеуказанной непрерывностью, имеют одну и ту же единицу. В-третьих, это одно есть также и отрицание многих одних как простая граница, есть некое исключение из себя своего инобытия, определение себя по отношению к другим определенным количествам. Постольку одно есть (α) соотносящаяся с собою (β), объемлющая и (γ) исключающая другое граница.

Определенное количество, полностью положенное в этих определениях, есть число. Полная положенность заключается в наличном бытии границы как множества и, стало быть, в ее отличности от единицы. Число представляется поэтому дискретной величиной, но оно обладает также и непрерывностью в виде единицы. Оно поэтому и есть определенное количество в совершенной определенности, так как в числе граница выступает в виде определенного множества, имеющего своим принципом одно, т. е. нечто безоговорочно определенное. Непрерывность, в каковой одно есть лишь в себе, как снятое (положенное как единица), есть форма неопределенности.

Определенное количество, лишь как таковое, ограничено вообще; его граница есть его абстрактная, простая определенность. Но, поскольку оно есть число, эта граница положена как многообразная в себе самой. Число содержит в себе те многие одни, которые составляют его наличное бытие, но содержит их не неопределенным образом, а определенность границы имеет место именно в нем; граница исключает другое наличное бытие, т. е. другие многие, и объемлемые ею одни суть некоторое определенное множество, численность[48], в отношении которой как дискретности, как она есть в числе, другим служит единица, его непрерывность. Численность и единица составляют моменты числа.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги