β) Сказанным определяется природа уравнения, над которым нужно будет производить действия, и теперь следует указать, каков тот интерес, на удовлетворение которого направлено произведение этих действий. Это рассмотрение может нам дать лишь уже знакомые результаты, результаты такого рода, какие по форме имеются в особенности в понимании этого предмета Лагранжем; но я придал изложению совершенно элементарный характер, чтобы устранить примешавшиеся сюда чужеродные определения. Основой для действий над уравнением указанного вида оказывается то, что степень внутри ее самой понимается как некоторое отношение, как система определений отношения. Степень, указали мы выше, есть число, поскольку оно пришло к тому, что его изменения определены им же самим, его моменты, единица и численность, тождественны – вполне, как мы выяснили ранее, ближайшим образом в квадрате, более формально (что не составляет здесь разницы) в высших степенях. Степень (ввиду того что она как число – хотя бы мы и предпочитали выражение «величина», как более общее, она в себе всегда есть число – есть некоторое множество, могущее быть изображенным также и как сумма) может ближайшим образом быть разложена внутри себя самой на любое множество чисел, которые не имеют никакого другого определения как относительно друг друга, так и относительно их суммы, кроме того, что они все вместе равны последней. Но степень может быть также разложена на сумму таких различий, которые определены формой степени. Если степень принимается за сумму, то в виде суммы рассматривается также и ее основное число, корень, и оно может быть разложено любым образом, каковое разнообразие разложений есть однако нечто безразличное, эмпирически количественное. Сумма, каковою должен быть корень, сведенная к ее простой определенности, т. е. к ее истинной всеобщности, есть двучлен; всякое дальнейшее увеличение числа членов есть простое повторение того же определения и потому нечто пустое[63]. Единственно важным является здесь, стало быть, та качественная определенность членов, которая получается посредством возвышения в степень принимаемого за сумму корня, каковая определенность заключается единственно только в том изменении, которым является возвышение в степень. Эти члены суть, следовательно, всецело функции возвышения в степень и [самой] степени. Это изображение числа как суммы некоторого множества таких членов, которые суть функции возвышения в степень, а затем интерес нахождения формы таких функций и, далее, этой суммы из множества таких членов, поскольку это нахождение должно зависеть только от сказанной формы – все это составляет, как известно, особое учение о рядах. Но при этом мы должны существенно различать еще дальнейший интерес, а именно отношение самой лежащей в основании величины, – определенность которой, поскольку она есть некоторый комплекс, т. е. в данном случае уравнение, заключает в себе некоторую степень, – к функциям ее возвышения в степень. Это отношение, совершенно абстрагированное от вышеназванного интереса нахождения суммы, окажется тем углом зрения, который вытекает из действительной науки, как единственный, имеющийся в виду дифференциальным исчислением.