Исходя из предшествующего, мы должны в этом отношении сперва напомнить, что различные степенные определения выступают с аналитической стороны прежде всего таким образом, что они оказываются лишь формальными и совершенно однородными, означают числовые величины, которые как таковые не имеют вышеуказанного качественного различия друг от друга. Но в приложении к пространственным предметам аналитическое отношение являет себя во всей своей качественной определенности как переход от линейных к плоскостным определениям, от прямолинейных к криволинейным определениям и т. д. Далее, это приложение влечет за собой то последствие, что пространственные предметы, согласно своей природе данные в форме непрерывных величин, понимаются как дискретные – плоскость, значит, понимается как множество линий; линия – как множество точек и т. д. Единственный интерес такого разложения состоит в определении самих точек, на которые разлагается линия, линий, на которые разлагается плоскость, и т. д., чтобы, исходя из такого определения, иметь возможность двигаться далее аналитически, т. е., собственно говоря, арифметически; эти исходные пункты представляют собой для искомых определений величины те элементы, из которых должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в которых по преимуществу оказывается выгодным употреблять этот прием, требуют, чтобы в виде элемента наличествовало в качестве исходного пункта некое само по себе определенное, в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то само по себе определенное, нахождение которого он ставит себе целью. Полученный результат сводится в обоих методах к одному и тому же, если только оказывается возможным найти закон все дальнейшего и дальнейшего определения, при отсутствии возможности достигнуть полного, т. е. так называемого конечного определения. Кеплеру приписывается честь, что ему впервые пришла в голову мысль прибегнуть к указанному обратному ходу решения и сделать исходным пунктом дискретное. Его объяснение того, как он понимает первую теорему архимедова измерения круга, выражает это очень просто. Первая теорема Архимеда, как известно, гласит, что круг равен прямоугольному треугольнику, один катет которого равен радиусу, а другой – длине окружности. Так как Кеплер находит смысл этой теоремы в том, что окружность круга содержит в себе столько же частей, сколько точек, т. е. бесконечно много, из которых каждая может рассматриваться как основание равнобедренного треугольника, то он этим выражает разложение непрерывного в форму дискретного. Встречающееся здесь выражение «бесконечное» еще очень далеко от того определения, которое оно должно иметь в дифференциальном исчислении. Если для таких дискретных найдена некоторая определенность, функция, то в дальнейшем они должны быть соединены, должны, по существу, служить элементами непрерывного. Но так как никакая сумма точек не образует линии, никакая сумма линий не образует плоскости, то точки уже с самого начала принимаются за линейные, равно как линии за плоскостные. Однако так как вместе с тем указанные линейные точки еще не должны быть линиями, чем они были бы, если бы их принимали за определенные количества, то их представляют себе как бесконечно-малые. Дискретное способно лишь к внешнему объединению, в котором моменты сохраняют смысл дискретных одних; аналитический переход от последних совершается лишь к их сумме, он не есть вместе с тем геометрический переход от точки к линии и от линии к плоскости и т. д. Элементу, имеющему свое определение как точка или как линия, придается поэтому вместе с тем наряду с качеством точки еще и качество линейности, а линии – еще и качество плоскости, дабы сумма как сумма маленьких линий оказалась линией и как сумма маленьких плоскостей – плоскостью.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги