Как видим, Кавальери хочет провести различие между тем, что принадлежит к внешнему существованию непрерывного, и тем, в чем состоит его определенность и что единственно и следует выделять в целях сравнения и для получения теорем о нем. Категории, которые он употребляет при этом, говоря, что непрерывное сложено из неделимых или состоит из них и т. п., разумеется, неудовлетворительны, так как при этом приходится утверждать вместе с тем созерцаемость непрерывного или, как мы сказали выше, его внешнее существование; вместо того чтобы сказать, что «непрерывное есть не что иное, как сами неделимые», было бы правильнее и, стало быть, само по себе сразу ясно, сказать, что определенность величины непрерывного есть не что иное, как определенность величины самих неделимых. Кавальери не придает никакого значения плохому выводу, что, стало быть, существуют-де большие и меньшие бесконечные, выводу, делаемому школой, из представления, что неделимые составляют непрерывное, и он определенно выражает далее (Geom., lib. VII, praef.) уверенность в том, что он своим способом доказательства отнюдь не вынуждается представлять себе непрерывное сложенным из неделимых; непрерывные лишь следуют пропорции неделимых. Он, говорит о своем методе Кавальери, берет агрегаты неделимых не с той стороны, с какой они кажутся подпадающими под определение бесконечности, как представляющие собою бесконечное множество линий или плоскостей, а лишь постольку, поскольку они имеют некоторый определенный характер и природу ограниченности. Но чтобы устранить и этот камень преткновения, он все же в специально для этого прибавленной седьмой книге не жалеет труда доказать основные теоремы своей геометрии таким способом, который остается свободным от примеси бесконечности. Этот способ сводит доказательства к вышеупомянутой обычной форме наложения фигур, т. е., как мы заметили выше, к представлению об определенности как о внешней пространственной границе.

Относительно этой формы наложения можно, прежде всего, сделать еще и то замечание, что она есть, так сказать, ребяческая помощь чувственному созерцанию. В элементарных теоремах о треугольниках представляют их два рядом, и поскольку в каждом из них из шести частей известные три принимаются равными соответствующим трем частям другого треугольника, показывается, что такие треугольники совпадают между собою, т. е. что каждый из них имеет равными с другим также и прочие три части, так как они вследствие равенства тех трех первых частей полностью налагаются друг на друга. Формулируя это более абстрактно, можно сказать, что именно вследствие равенства каждой пары соответствующих частей двух треугольников имеется только один треугольник; в последнем три части принимаются нами за уже определенные, из чего следует определенность также и трех остальных частей. Здесь таким образом показывается, что в трех частях определенностьзавершена; стало быть, для определенности как таковой три остальные части представляют собою некоторое излишествоизлишество чувственного существования, т. е. созерцания непрерывности. Высказанная в такой форме качественная определенность выступает здесь в своем отличии от того, что предлежит в созерцании, от целого как некоторого непрерывного внутри себя; наложение мешает осознать это различие.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги