Спиноза выставляет и поясняет примерами понятие истинной бесконечности в противоположность дурной главным образом в том смысле, в котором мы показали, что так называемую сумму или конечное выражение бесконечного ряда следует рассматривать скорее как бесконечное выражение. Понятие истинной бесконечности будет лучше всего освещено, если я рассмотрю сказанное им об этом предмете непосредственно вслед за только что изложенными соображениями.

Спиноза определяет прежде всего бесконечное как абсолютное утверждение существования какой-нибудь природы, а конечное, напротив, как определенность, как отрицание. Абсолютное утверждение некоторого существования следует понимать именно как его соотношение с самим собой, означающее, что оно есть не потому, что другое есть; конечное же есть отрицание, есть прекращение как соотношение с некоторым иным, начинающимся вне его. Абсолютное утверждение некоторого существования, правда, не исчерпывает понятия бесконечности; это понятие подразумевает, что бесконечность есть утверждение не как непосредственное, а только как восстановленное через рефлексию иного в само себя, или, иначе говоря, как отрицание отрицательного. Но у Спинозы субстанция и ее абсолютное единство имеют форму неподвижного единства, т. е. не опосредствующего себя с самим собой, – форму какой-то оцепенелости, в которой еще не находится понятие отрицательного единства самости, субъективность.

В качестве математического примера для пояснения истинного бесконечного (письмо XXIX) Спиноза приводит пространство между двумя неравными кругами, один из которых находится внутри другого, не касаясь его, и которые не концентричны. Этой фигуре и понятию, в качестве примера которого он ею пользуется, он, по-видимому, придавал столь большое значение, что сделал ее эпиграфом своей «Этики». – «Математики, – говорит он, – умозаключают, что неравенства, возможные в таком пространстве, бесконечны не от бесконечного множества частей, ибо величина этого пространства определена и ограничена, и я могу предположить такое пространство бóльшим или меньшим, а они делают этот вывод на том основании, что природа этой вещи превосходит всякую определенность»{41}. – Как видим, Спиноза отвергает представление о бесконечном как о множестве или как о незавершенном ряде и напоминает, что в пространстве, приводимом им в качестве примера, бесконечное не находится по ту сторону, а налично и полно; это пространство есть нечто ограниченное, но именно потому бесконечное, «что природа вещи превосходит всякую определенность», так как содержащееся в нем определение величины в то же время не может быть представлено как определенное количество или, употребляя приведенное выше выражение Канта, синтезирование не может быть завершено, доведено до некоторого – дискретного – определенного количества. – Каким образом противоположность между непрерывным и дискретным определенным количеством приводит к бесконечному, – это мы разъясним в одном из следующих примечаний. – Бесконечное ряда Спиноза называет бесконечным воображения, бесконечное же как соотношение с самим собой – бесконечным мышления или infinitum actu [актуально бесконечным]. Оно именно actu, действительно бесконечно, так как оно внутри себя завершено и налично. Так, ряд 0,285714… или 1+а+а23… есть лишь бесконечное воображения или мнения, ибо он не обладает действительностью, ему безусловно чего-то недостает. Напротив, 2/7 или есть в действительности не только то, что ряд представляет собой в своих наличных членах, но к тому же еще и то, чего ему недостает, чем он только должен быть. 2/7 или есть такая же конечная величина, как заключенное между двумя кругами пространство и его неравенства в примере Спинозы, и, подобно этому пространству, может быть увеличена или уменьшена. Но отсюда не получается нелепость большего или меньшего бесконечного, ведь это определенное количество целого не касается отношения его моментов, природы вещи, т. е. качественного определения величины; то, чтó в бесконечном ряде имеется налицо, есть также конечное определенное количество, но кроме того еще нечто недостающее. – Напротив, воображение не идет дальше определенного количества, как такового, и ие принимает во внимание качественного соотношения, составляющего основу имеющейся несоизмеримости.

Несоизмеримость, имеющая место в примере, приводимом Спинозой, заключает в себе вообще криволинейные функции и приводит к тому бесконечному, которое ввела математика при действиях с такими функциями и вообще при действиях с функциями переменных величин; это бесконечное есть истинно математическое, качественное бесконечное, которое мыслил себе и Спиноза. Это определение мы должны здесь рассмотреть подробнее.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги