Любопытной особенностью аналитики «больших данных» является то, что занятым в этой сфере специалистам не так уж важно, от кого получены данные, от людей, частиц в атмосфере, автомобилей или бактерий. Профессионалы в области анализа данных чаще более подкованы в математике и физике, нежели в социологии. Они производят знания о нашем поведении, но никак не претендуют на экспертное мнение о людях, шопинге, финансах или градостроении. Им нет до нас никакого дела. Их умения относятся скорее к изучению тех аспектов бытия, что уже переведены в численные величины, чем изучению бытия как такового.

Это приводит к появлению нового типа экспертов, отличного от того, который появился в XVII веке. Они не изучают природу или общество так, как делали их предшественники, а обнаруживают закономерности в данных, уже зафиксированных компьютерами. В отличие от ученого аналитик данных сравним скорее с библиотекарем, т. е. с тем, кто обучен ориентироваться в обширной коллекции уже записанной информации. Разница в том, что архив данных растет с огромной скоростью, постоянно пополняясь благодаря множеству неодушевленных устройств их сбора, и может быть проанализирован только алгоритмически.

Возьмем для примера психологию. Наука о данных раскрывает много такого, что может заинтересовать психологов, ввиду способности алгоритмов распознавать эмоции, шаблоны поведения и тревоги среди населения. Facebook изначально построен так, чтобы формировать осмысленные с точки зрения психологии данные, что позволяет их рекламодателям попадать в целевую группу с огромной точностью. После выборов в 2016 году в США сообщалось, что можно было выбрать любую из 175 000 версий политической рекламы и направить ее подходящему человеку, исходя из 300 его «лайков»[201]. И тем не менее аналитикам данных не требуется никаких теоретических знаний о том, как формируются политические взгляды и что это вообще такое. Равно как и не нужно им никакого заранее определенного представления о том, что стоит изучать. Они лишь определяют, как различные закономерности в поведении, изображения и слова могут коррелировать в пределах определенной части населения.

Основное отличие «больших данных» (их размер) в то же время является их ключевой проблемой. Задачей аналитика является содействие извлечению чего-то значимого из набора данных при игнорировании всего остального. Ценность его заключается в отбрасывании огромных массивов бесполезной информации, оставляя лишь то, что заслуживает внимания[202]. Однако если у них нет никакого реального интереса к рассматриваемой теме (кроме математического), то у них нет и собственного понимания того, что есть «значимое», – как следствие, они действуют на усмотрение клиента. Иначе же в работу будут вклиниваться их собственные предубеждения и предположения, минуя сознательное осмысление и критику[203].

Клиентов, использующих услуги науки данных, постоянно становится все больше. «Quants» могут делать большие деньги, работая на банки с Уолл-стрит и хедж-фонды, разрабатывая алгоритмы для анализа динамики цен. Проекты типа «умный город» полагаются на датологов в деле обнаружения закономерностей в беспорядочных передвижениях городского населения, ресурсов и транспорта. Фирмы, подобные Palantir Питера Тиля, помогают службам безопасности определять вероятные источники угрозы, выделяя опасные шаблоны поведения. И наконец, существуют темные конторы вроде Cambridge Analytica, предоставляющие потенциальным клиентам услуги по формированию обращений к определенным избирателям. В каждом из этих случаев аналитик данных может дать совет, что сделать с целью послужить определенным интересам или идеям, но такие, как он, редко подкованы в производстве фактов как основы общественного консенсуса.

Коммерческие аналитические компании неизбежно сталкиваются с проблемами коммерческой тайны и клиентской конфиденциальности. Но если дело касается «больших данных», нет ясности, что на самом деле должен означать «факт»: смысл того, что отражают данные, зависит от предмета поисков, которые зависят от того, кто вы такой. Познание такого рода преследует стратегические цели, а не служит формированию общей картины мира. Какая истина скрыта в обширных массивах беспорядочных данных, отчасти зависит от того, что там ищут. Там, где хранится столько свидетельств наших поведения и историй поиска, записанных автоматически, у людей циничных появляется возможность способствовать формированию неполного и лживого портрета личности или события. Это опасно сочетается с расистской и националистической политикой, что стремится преувеличить культурные и моральные барьеры, используя для этого тщательно отобранные образы. Нет даже необходимости фабриковать свидетельства, когда извлечение значимых данных проделано с достаточной степенью политической предвзятости.

Перейти на страницу:

Все книги серии Цивилизация и цивилизации

Похожие книги