Эта деформация может быть любой, однако она должна быть непрерывной, т. е. быть такой, которая преобразует какую-либо фигуру в другую, эквивалентную ей с точки зрения Analysis situs. Следовательно, пространство, рассматриваемое независимо от наших измерительных инструментов, не имеет ни метрических, ни проективных свойств. Оно имеет лишь топологические свойства (т. е. свойства, которые изучает Analysis situs). Оно аморфно, т. е. оно не отличается от такого пространства, которое может быть выведено из него произвольной непрерывной деформацией. Чтобы пояснить свою мысль, я воспользуюсь математическим способом выражения. Рассмотрим два пространства
В другом месте я подробно разъяснил, как введение наших измерительных инструментов и в особенности твердых тел позволяет уму определить и более полно организовать это аморфное пространство, как оно позволяет проективной геометрии провести в нем сеть прямых линий, а метрической геометрии измерить расстояния между его точками, какую существенную роль играет в этом процессе основное понятие группы. Я считаю все эти вопросы разобранными и не буду к ним возвращаться.
Единственным нашим предметом здесь является аморфное пространство, изучаемое Analysis situs, единственное пространство, не зависящее от наших измерительных инструментов, и его основное свойство (я чуть было не сказал, его единственное свойство) быть непрерывностью трех измерений.
Но что такое непрерывность
Следовательно, можно, деформируя плоскость, получить прямую, лишь бы эта деформация не была непрерывной. Наоборот, это было бы невозможно при непрерывной деформации. Таким образом, вопрос о числе измерений тесно связан с понятием непрерывности и теряет всякий смысл для того, кто отвлекся бы от этого понятия.
Для определения непрерывности
Хотя это определение безупречно с математической точки зрения, однако оно не может нас вполне удовлетворить. В непрерывности различные координаты не просто расположены, так сказать, одна около другой; они связаны между собой, образуя различные аспекты одного целого. Изучая пространство, мы в каждый момент производим то, что называется изменением координат. Например, мы изменяем прямоугольные оси координат или даже переходим к криволинейным координатам. Изучая другую непрерывность, мы также изменяем координаты, т. е. заменяем наши
Наконец, это определение с легкостью жертвует интуитивным происхождением понятия непрерывности и всеми богатствами, заключающимися в этом понятии. Оно относится к категории тех определений, которые стали столь частыми в математике с тех пор, как стремятся «арифметизировать» эту науку. Эти определения, как мы сказали, безупречные с точки зрения математика, не могут удовлетворить философа. Они заменяют определяемый предмет и интуитивное понятие этого предмета конструкцией, сделанной из более простых материалов. Мы видим, что действительно из этих материалов можно выполнить такую конструкцию, но в то же время видно, что из них можно было бы сделать и множество других конструкций. Из самой конструкции непонятно, в силу каких глубоких соображений собрали эти материалы именно таким, а не каким-нибудь иным образом. Я не хочу сказать, что эта «арифметизация» математики — плохая вещь, я утверждаю лишь, что она не составляет всего.