Седиментацией называют свободное оседание частиц в вязкой среде под действием гравитационного поля. Скорость оседания прямо пропорциональна ускорению гравитационного поля Земли (g), разности плотностей частиц и окружающей среды, квадрату радиуса оседающих сферических частиц и обратно пропорциональна вязкости среды (закон Стокса, 1880 г.).

Рис. 93. Границы размеров частиц дисперсных систем и применения оптических методов определения дисперсности: 1 — глаз; 2 — ультрафиолетовый микроскоп. Для сравнения показан размер пор бумажных фильтров (3) и пар ультрафильтров (4).

- 309 -

рис. 94. Схема гель-хроматографии: 1 — на колонку с гелем (сферические светлые частицы) нанесен исследуемый раствор; 2 — после промывания колонки растворителем.

Седиментируют только достаточно крупные частицы. Так, частицы кварца размером 5 мкм оседают в воде за час на 3 см.

Седиментации частиц размером 1 мкм и менее препятствует броуновское движение. Поэтому истинные и коллоидные растворы, включая растворы высокомолекулярных соединений, седиментационно устойчивы, а суспензии — неустойчивы.

Предоставив суспензии осаждаться под действием силы тяжести, через определенные промежутки времени определяют массу частиц, накопившихся на чашечке, погруженной в суспензию на определенную глубину. Так можно установить распределение частиц по фракциям разного размера. Такой метод дисперсионного анализа суспензий получил название седиментационного анализа. Его широко применяют при изучении дисперсных систем с размерами частиц от 100 до 1 мкм, в частности почв и грунтов.

Применение ультрацентрифуг, в которых ускорение в миллион раз превосходит ускорение силы тяжести, дало возможность изучить седиментацию белков и других высокомолекулярных соединений, а также вирусов.

За последние годы широкое применение для разделения высокомолекулярных веществ и определения их молекулярной массы нашел предложенный Л. Поратом и П. Флодииом (Швеция) метод гель-фильтрации (гель-хроматографии). Гель-хроматография состоит в фильтровании исследуемого раствора через колонки, заполненные зернами набухающего трехмерного полимера (сефадекса). Набухшие зерна сефадекса представляют собой своеобразные «клетки», внутрь которых могут проникнуть путем диффузии только молекулы (ионы) подходящего размера. Более крупные молекулы проходят с фильтрационным потоком мимо зерен сефадекса (рис. 94). Набор различных марок сефадексов с возрастающим размером «клеток» позволяет отделять низкомолекулярные вещества от высокомолекулярных, разделять макромолекулы, изучать образование ассоциатов в макромолекулярных растворах.

<p>109. Сорбция и сорбционные процессы.</p>

Молекулярная адсорбция. Сорбцией (от латинского «sorbeo» — поглощаю, втягиваю) называют любой процесс поглощения одного вещества (сорбтива) другим (сорбентом), независимо от механизма поглощения. В зависимости от механизма сорбции различают адсорбцию, абсорбцию, хемосорбцию и капиллярную конденсацию.

Адсорбцией называют изменение концентрации вещества на границе раздела фаз. Адсорбция происходит на любых межфазовых поверхностях, и адсорбироваться могут любые вещества. Адсорбционное равновесие, т. е. равновесное распределение вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливается. Адсорбция Уменьшается с повышением температуры.

В ряде случаев поглощение одного вещества другим не ограничивается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение газов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют хемосорбцией. Так, поглощение аммиака или хлороводорода водой, поглощение влаги и кислорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция — примеры хемосорбционных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском жидкости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над плоской поверхностью жидкости при той же температуре.

Таким образом, сорбционные процессы различны по их механизму. Однако любой сорбционный процесс начинается с адсорбции на границе соприкасающихся фаз, которые могут быть жидкими, газообразными или твердыми.

Как указывалось в § 106, все самопроизвольные процессы на границах раздела фаз происходят в направлении уменьшения свободной поверхностной энергии. Следовательно, положительная адсорбция, приводящая к повышению концентрации вещества в пограничном слое, возможна только в том случае, если при этом уменьшается величина поверхностного натяжения.

Перейти на страницу:

Поиск

Похожие книги