Первые эксперименты по искусственному окрашиванию флюорита были выполнены Л. Вёлером в 1905 г. Он окрасил кристалл флюорита в синий цвет, нагревая его в парах кальция. Впоследствии эксперименты по аддитивному окрашиванию природного флюорита провели Г. Хаберландт и Е. Мольво. В спектрах поглощения таких кристаллов присутствуют две полосы поглощения — 375 (α-полоса) и 520 нм (β-полоса) — так называемый спектр Мольво, которые отождествляются с поглощением на
Другим методом искусственного создания центров окраски является облучение кристаллов жестким излучением — рентгеновскими, γ-лучами, частицами высоких энергий. Активация центров окраски происходит и в природных условиях.
В кислородсодержащих кристаллах флюорита с высоким содержанием анионных вакансий после радиационного окрашивания П. П. Феофилов обнаружил две полосы поглощения — 370 и 560 нм, которые он отождествил с F2-центрами, представляющими собой парные анионные вакансии с двумя локализованными на них электронами. Такие же центры были обнаружены и в кристаллах SrF2.
В природных кристаллах флюорита обычно наблюдаются сложные центры окраски, представляющие собой агрегаты из двух, трех и четырех примыкающих друг к другу элементарных F-центров. Соответственно они обозначаются: F2-, F3- и F4-центры или М (F2-центр), R1 и R2 (F3-центр), N (F4-центр). В природных условиях образованию F-агрегатных центров способствует диффузия дефектов решетки с их последующей агрегацией в процессе роста и дальнейшего существования кристалла в изменяющихся температурных и радиационных полях. Такие сложные центры наиболее устойчивы к термическому обесцвечиванию. Они в противоположность простым F-центрам, как бы пройдя «естественный отбор», чаще наблюдаются в природных кристаллах.
Описанные центры окраски во флюорите являются по своей природе электронными. Кроме них, существуют дырочные центры окраски, которые отождествляются с ионами фтора, утратившими электрон, — F0. Эти центры устойчивы только при низких температурах.
Кроме электронно-дырочных центров, в объяснении окраски флюорита определенную роль играют примесные дефекты. Это прежде всего дефекты, связанные с внедрением ионов редкоземельных элементов в структуру флюорита. Причем роль двух- и трехвалентных ионов в окраске существенно различна в силу специфических особенностей их энергетического состояния. В спектрах CaF2 — TR3+ полосы поглощения, соответствующие (f—d)-переходам в пределах внутренней, защищенной от внешних влияний оболочки, попадают в далекую, за пределами видимой, УФ-область спектра. В видимой и прилегающей к ней части спектры TR3+-ионов, обусловленные (f—f)-переходами, имеют линейчатый характер, т. е. состоят из серии очень узких линий. Поэтому влияние ионов TR3+ на цвет флюорита практически исключается, тем более что концентрация редкоземельных элементов, а следовательно, и интенсивность полос поглощения незначительные.
Рис. 5. Спектр поглощения (1) и люминесценции (2) кристалла флюорита зеленой окраски
Рис. 6. Кривая термолюминесценции флюорита с полосами излучения на различных центрах
По-другому проявляют себя ионы TR2+. Они имеют широкие интенсивные полосы поглощения, соответствующие (
Наиболее значительное влияние на окраску флюорита оказывают Sm2+, Eu2+, Dy2+, Yb2+. Полосы поглощения других TR2+-ионов располагаются в ИК-области спектра.
П. П. Феофиловым [1956] было показано, что зеленая окраска кристаллов флюорита обусловлена двухвалентным самарием. В видимой области спектра у кристаллов CaF2—Sm2+ фиксируются две интенсивные полосы поглощения: ~425 и ~630 нм (рис. 5). В определенных условиях ионы могут переходить из одного валентного состояния в другое, вызывая тем самым изменение окраски кристалла. На этом основано окрашивание кристаллов с помощью γ-облучения и, наоборот, их обесцвечивание при нагревании.