Этот прямоугольный треугольник, катетами которого являются dx и dy, является тем характеристическим треугольником, о котором мы говорили выше. По сути, его катеты бесконечно малой длины совпадают со сторонами многоугольника с бесконечным числом сторон, в виде которого можно представить исходную кривую. Основная разница между этими величинами заключается в том, что Лейбниц работает с ними как с числами (с некоторыми ограничениями) и использует их для получения конкретных результатов. С их помощью ему даже удалось решить задачу о квадратуре, то есть вычислить площадь, ограниченную кривой. Говоря проще, если площадь некоторой фигуры состоит из дифференциалов, достаточно сложить их, чтобы узнать искомую площадь (в этом смысле дифференцирование и интегрирование являются обратными операциями).

Потрет Гэтфрида Лейбница в возрасте приблизительно пятидесяти четырех лет.

* * *

ЛЕЙБНИЦ И ОРДЕН РОЗЕНКРЕЙЦЕРОВ

В возрасте 20 лет Лейбниц вступил в ряды таинственного ордена розенкрейцеров, членами которого также были Ньютон и Декарт. Не следует удивляться — в то время ученым сложно было получать необходимую для исследований информацию из официальных источников, и членство в подобных обществах было одним из факторов их научного прогресса. Условием вступления в орден было проведение алхимических опытов, и Лейбниц, который в итоге занял пост секретаря братства, занялся выполнением экспериментов, описанных на латыни в объемном труде алхимика Василия Валентина. Через братство он познакомился с первооткрывателем фосфора Хеннигом Брандом и помог ему выделить фосфор из мочи целого полка солдат для последующего коммерческого использования. Лейбниц также активно сотрудничал с Фридрихом Гофманом, возглавлявшим кафедру медицины в Университете Галле. Одним из результатов их совместной работы стали знаменитые гофманские капли, которые до сих пор можно встретить в некоторых немецких аптеках.

Храм братства Розы и Креста, рисунок из книги Теофилуса Швейгхардта Константиенса, 1618 год.

* * *

Бесконечно малые величины не были с восторгом приняты математиками той эпохи. Характеристический треугольник использовался в рассуждениях, но так и не получил строгого определения. Он лишь представлял нечто происходящее в загадочном и непонятном мире бесконечно малых, и его использование предполагало принятие актуальной бесконечности, как бы ученые ни стремились этого избежать.

Кроме того, следовало каким-то образом уйти от архимедовского принципа сравнения величин, и Паскаль, Лопиталь, Бернулли и сам Лейбниц в итоге стали рассматривать бесконечно малые как особые величины, которые в определенных условиях равняются нулю. Лейбниц неспроста дал своей работе название «О скрытой геометрии и анализе неделимых и бесконечных величин».

Эпсилон

Когда говорят об эпсилонах или о языке эпсилон-дельта, речь идет вовсе не о секретных кодах Министерства обороны, а о сложном математическом аппарате, который напрямую связан с понятием предела. Первое определение понятию предела сформулировал Бернард Больцано (1781–1848), не получивший, к сожалению, при жизни должного признания. Первым, кто использовал это понятие на практике, был Огюстен Луи Коши (1789–1857), однако окончательное строгое определение предела дал Карл Вейерштрасс. Определение предела на языке эпсилон-дельта является чрезвычайно точным в той части, которая касается делимости на бесконечное множество частей. Хотя это определение очень сложно понять тому, кто не владеет некоторыми математическими знаниями, оно тем не менее долгое время использовалось в учебниках для средней школы. Мы не хотим сказать, что старшеклассники недостаточно умны, чтобы понять его, но не стоит ожидать, что все поймут его с одинаковой легкостью. Во многих учебниках оно приводится мелким шрифтом, и преподаватели обходят его молчанием.

Перейти на страницу:

Все книги серии Мир математики

Похожие книги