if (x.load(std::memory_order_relaxed))              ←(6)

  ++z;

}

int main() {

 x = false;

 y = false;

 z = 0;

 std::thread a(write_x_then_y);

 std::thread b(read_y_then_x);

 a.join();

 b.join();

 assert(z.load() != 0); ←(7)

}

Барьер освобождения (2) синхронизируется-с барьером захвата (5), потому что операция загрузки y в точке (4) читает значение, сохраненное в точке (3). Это означает, что сохранение x (1) происходит-раньше загрузки x (6), поэтому прочитанное значение должно быть равно true, и утверждение (7) не сработает. Здесь мы наблюдаем разительное отличие от исходного случая без барьеров, когда сохранение и загрузка x не были упорядочены, и утверждение могло сработать. Отметим, что оба барьера обязательны: чтобы получить отношение синхронизируется-с необходимо освобождение в одном потоке и захват в другом.

В данном случае барьер освобождения (2) оказывает такой же эффект, как если бы операция сохранения y (3) была помечена признаком memory_order_release, а не memory_order_relaxed. Аналогично эффект от барьера захвата (5) такой же, как если бы операция загрузки y (4) была помечена признаком memory_order_acquire. Это общее свойство всех барьеров: если операция захвата видит результат сохранения, имевшего место после барьера освобождения, то барьер синхронизируется-с этой операцией захвата. Если же операция загрузки, имевшая место до барьера захвата, видит результат операции освобождения, то операция освобождения синхронизируется-с барьером захвата. Разумеется, можно поставить барьеры по обе стороны, как в примере выше, и в таком случае если загрузка, которая имела место до барьера захвата, видит значение, записанное операцией сохранения, имевшей место после барьера освобождения, то барьер освобождения синхронизируется-с барьером захвата.

Хотя барьерная синхронизация зависит от значений, прочитанных или записанных операциями до и после барьеров, важно отметить, что точкой синхронизации является сам барьер. Если взять функцию write_x_then_y из листинга 5.12 и перенести запись в x после барьера, как показано ниже, то уже не гарантируется, что условие в утверждение будет истинным, несмотря на то что запись в x предшествует записи в y:

void write_x_then_y() {

 std::atomic_thread_fence(std::memory_order_release);

 x.store(true, std::memory_order_relaxed);

 y.store(true, std::memory_order_relaxed);

}

Эти две операции больше не разделены барьером и потому не упорядочены. Барьер обеспечивает упорядочение только тогда, когда находится между сохранением x и сохранением y. Конечно, наличие или отсутствие барьера не влияет на упорядочения, обусловленные отношениями происходит-раньше, которые существуют благодаря другим атомарным операциям.

Данный пример, как и почти все остальные в этой главе, целиком построен на переменных атомарных типов. Однако реальная польза от применения атомарных операций для навязывания упорядочения проистекает из того, что они могут упорядочивать неатомарные операции и тем самым предотвращать неопределенное поведение из-за гонок за данными, как мы видели в листинге 5.2.

<p>5.3.6. Упорядочение неатомарных операций с помощью атомарных</p>

Если заменить тип переменной x в листинге 5.12 обычным неатомарным типом bool (как в листинге ниже), то гарантируется точно такое же поведение, как и раньше.

Листинг 5.13. Принудительное упорядочение неатомарных операций

#include

#include

#include

bool x = false;    ←┐Теперь x — простая

std::atomic y;│неатомарная

std::atomic z; │переменная

void write_x_then_y() {(1) Сохранение x

 x = true;            ←┘перед барьером

 std::atomic_thread_fence(std::memory_order_release);

 y.store(true, std::memory_order_relaxed);←┐Сохранение y

}                                         (2) после барьера

void read_y_then_x()                        (3) Ждем, пока не

{                                            │увидим значение,

 while (!y.load(std::memory_order_relaxed));←┘записанное в 2

 std::atomic_thread_fence(std::memory_order_acquire);

 if (x) ←┐Здесь будет прочитано

  ++z;   (4) значение, записанное в 1

}

Перейти на страницу:

Похожие книги