Поставим в основании башни шестнадцать линейных ускорителей. Получаем квадрат 800 на 800 метров. Высоту повысим до двух километров. Первый километр — 16 корректирующих треков, второй километр — зеркало. Одно на всех, большое, да. Впрочем, ничто не мешает нам разбить его на 16 сегментов, если хотим стрелять одновременно в разных направлениях. Общая площадь от этого не изменится.
Ну а от высоты километра до двух, в стенках двухсотметровой толщины — по 16 плазменных линз. И ещё столько же в крыше.
Итак. Имея две башни на днище и две на крыше корабля, каждая высотой в 2 и диаметром в 1 километр, мы можем в любую сторону направить 32 плазменных копья. А в того неудачника, что решится зайти к нам с борта — все 64 сразу.
И ещё скромную батарею на восемь копий — на нос. Здесь установки выстроены не квадратом, а линией, и выдвигаются из носовой щели.
Разумеется, в такой ситуации у неопытного кораблестроителя напрашивался вопрос — почему так мало? А у более опытного — наоборот, почему так много.
Сверхноситель типа CSO в пять раз больше, и соответственно, при абсолютно тех же пропорциях, в сто двадцать пять раз тяжелее штурмового носителя типа CAS (условно — если придираться, то там соотношение размеров чуть больше пятёрки). У последнего щит выдерживает до трёх гигатонн тротилового эквивалента внешнего воздействия, а энергокопья имеют суммарную огневую мощь три гигатонны в секунду. Чисто теоретически у CSO оба показателя должны составлять по 375 гигатонн.
Но это в теории. На практике же есть такая гнусная вещь, как закон квадрата-куба, который мешает бесконечно увеличивать без последствий как живые существа, так и технику. Увеличим реактор в два раза — его энерговыделение возрастёт в восемь раз. Круто? Очень круто, конечно. Только вот тепловыделение тоже выросло в восемь раз, а поверхность реактора (через которую нам нужно это самое лишнее тепло отводить, чтобы реактор не расплавился) — выросла всего в четыре раза. И сечение проводов (которые по идее должны доставлять энергию от этого реактора потребителям) — тоже всего в четыре.
Приходится втыкать в реактор два провода там, где когда-то был один. Всё оборудование разбухает, становится «слоноподобным» и «осьминогоподобным». Чем больше становится ваш корабль, тем больше он напоминает сплошную мешанину энергокабелей, шахт теплосброса и прочего вспомогательного оборудования. Тем меньше на нём места для жизни и войны.
Именно это, а не только злая воля Пророков, не желавших давать в руки своих боевиков чересчур сильное оружие, и стало причиной того, что мощь кораблей росла так непропорционально. Предела прямого масштабирования они достигли где-то на двух-трёх километрах. Уже CAS заметно уступал своим меньшим собратьям в огневой мощи на единицу тоннажа. Кит с сердцем дельфина.
Сверхносители типа CSO, однако, выглядели непропорционально урезанными даже с учётом этих ограничений. При соблюдении квадратичной зависимости от размера (которая достижима почти всегда), его огневая мощь и щит должны были достигать семидесяти пяти гигатонн в секунду, при линейной (которая достижима абсолютно всегда) — пятнадцати.
Да, Ричард сумел добиться для своего главного калибра 72 гигатонн, то есть почти достичь квадратичной зависимости. Но это работало далеко не везде.
Со щитом, например, просто увеличить количество установок нельзя. Щит — это по определению единый объект. Причём объект с весьма интересными и сложными свойствами. Чем глубже Ричард углублялся в его физику, тем больше офигевал.
Представим себе упругий и хорошо надутый резиновый мяч. Кинем в него камушек, так что тот отскочит. Совершённая мячом работа при этом будет равна нулю, состояние мяча не изменится — камень отлетит за счёт своей же собственной кинетической энергии.
Со слабыми внешними воздействиями дефлекторный щит точно так же и работает. Его нельзя истощить, бросая в него камни. Ну, если камни не размером со средний астероид и не летят со скоростью пары тысяч километров в секунду. Если на мяч надавить слишком сильно — тот лопнет. Но все деформации, что слабее порога разрушения, исправляются сами собой, даже не требуя энергии на восстановление. Он сам стремится к минимальной энергии и соответственно, к минимальной площади поверхности.
Но в этой игре есть маленький чит-код. Возьмём крошечную иголочку и кольнём в стенку мяча. Её энергия может быть ничтожна в сравнении с ударом большого камня, но в какой-то момент БУМ — весь огромный мяч сдувается от крошечного прокола, как только в одном месте превышен предел деформации.
Точно так же крошечная элементарная частица, разогнанная до скорости, близкой к световой, или гамма-квант с очень большой энергией могут преодолеть потенциальный барьер дефлектора и вызвать выравнивание физических констант внутри квантового поля и в остальной большой Вселенной.