Какими бы убедительными ни были аргументы физиков, какие бы схемы ядерных реакций они ни писали, химик все равно им не поверит, пока ему не дадут химического доказательства образования новых элементов при ядерных превращениях. Но как это сделать? Для обычного химического анализа необходимо иметь хотя бы микрокрупинку вещества, по крайней мере не меньше чем 10-8 г, то есть примерно 1014 атомов. А при облучении алюминия α-частицами за разумное время может образоваться в лучшем случае несколько миллионов, то есть 106 атомов. Однако если атомы фосфора — не простые, а радиоактивные, то химические доказательства его образования получить все-таки можно, используя так называемую «реакцию с носителем». Ее идея проста и остроумна: вначале к раствору, где химики подозревают наличие радиофосфора, приближают счетчик Гейгера — Мюллера, который сразу же начинает трещать, отзываясь даже на ничтожные примеси атомов радиофосфора. Затем в этот раствор добавляют большое количество обычного фосфора и после осаждают его с помощью подходящего реактива. Вместе с добавленным фосфором в осадок выпадает и подозреваемый радиофосфор. Дальнейшее просто: к осадку и к оставшемуся раствору поочередно приближают счетчик Гейгера, и если вблизи осадка он щелкает, а в растворе — молчит, значит, действительно в исходном растворе был радиофосфор, который затем полностью перешел в осадок. Вот так примерно и было получено первое химическое доказательство искусственного превращения элементов в процессе ядерных реакций.

Радиофосфор 3015P — первый радиоактивный изотоп, несуществующий в природе и все же полученный человеком. Потом их получат множество — свыше тысячи. Пройдет всего 11 лет, и в пустыне Аламогордо взорвется первая атомная бомба, начиненная несколькими килограммами изотопа плутония 23994Pu, которого еще за 5 лет до этого в природе не существовало.

Открытие Ирэн и Фредерика Жолио-Кюри немедленно удостоили Нобелевской премии за 1935 г.— настолько всем очевидна была его важность. Мария Кюри не дожила до этого дня: она умерла осенью 1934 г. Но перед смертью она все же успела прикоснуться обожженными радием пальцами к пробирке с радиофосфором и услышать щелканье счетчика Гейгера — Мюллера. Ирэн и Фредерика постигнет та же участь: оба они умрут от последствий радиоактивного облучения. Но прежде им еще предстоит пережить фашистское нашествие и построить первый атомный реактор во Франции.

<p><emphasis>МЕДЛЕННЫЕ НЕЙТРОНЫ</emphasis></p>

Великому итальянскому физику Энрико Ферми в истории атомной энергии принадлежит исключительная роль. Принято считать его теоретиком, однако Нобелевскую премию он получил за работу по экспериментальной физике, а Национальная академия в Риме присудила ему почетную медаль за работы по химии... Любая из научных специализаций была для него узка, он был естествоиспытателем в самом точном и широком смысле этого слова. Такая универсальность — качество в XX веке чрезвычайно редкое — оказалась совершенно необходимой при решении проблемы атомной энергии, где каждый шаг был — в неизвестность.

Ферми был одним из первых, кто сразу же понял, что нейтрон — это идеальное средство для исследования

ядерных реакций и простейший способ получения новых радиоизотопов. Главное отличие и преимущество нейтрона — его электронейтральность, которая позволяет ему беспрепятственно проникать в ядра любых, даже самых тяжелых элементов.

Летом 1934 г. группа молодых итальянских физиков, из которых самому младшему — Бруно Понтекорво — было 20, а самому старшему — Ферми — всего 33, увлеченно экспериментировала. Их приборы были просты: радон-бериллиевый источник нейтронов и счетчики Гейгера — Мюллера. Постановка задачи предельно ясная: облучить различные элементы нейтронами и посмотреть, что при этом происходит. Поле деятельности обширное — вся периодическая система элементов, а сил и энтузиазма — не занимать: впоследствии понадобилось написать более десяти статей, чтобы описать свойства нескольких десятков новых радиоизотопов, которые они при этом получили.

Когда нейтрон поглощается каким-либо ядром ΝZΧ с зарядом Ζ и массовым числом Ν, оно превращается в изотоп Ν+1ZΧ, который в свою очередь стремится избавиться от лишнего нейтрона. Самый простой путь — превратить нейтрон в протон, испустив при этом электрон и антинейтрино. При таком β-распаде ядра образуется ядро нового элемента Υ с зарядом ядра Ζ+1 и массовым числом Ν+1, то есть происходит последовательность ядерных реакций:

n+ΝZΧ → Ν+1ZΧ →βΝ+1Z+1Y+e+˜ν.

Несмотря на внешнее сходство, этот процесс получения искусственных изотопов сильно отличается от схемы Жолио-Кюри, которую можно представить в следующем виде:

В обоих случаях из элемента с зарядом ядра Ζ образуется элемент Υ с зарядом ядра Ζ+1, но изотопы при этом получаются разные: в опытах Ферми — с массовым числом N+1, а в опытах Жолио-Кюри — с N+3. И, конечно, если у Жолио-Кюри облученная α-частицами мишень испускала позитроны, то у Ферми та же мишень, облученная нейтронами, испускала электроны.

Перейти на страницу:

Похожие книги