Соотношение неопределенностей — одна из самых важных формул квантовой механики, в ней как бы сконцентрированы ее самые существенные особенности. После его открытия пришлось пересмотреть не только основы физики, но и теорию познания. Этот последний шаг оказался под силу лишь Нильсу Бору, который счастливо сочетал в себе могучий интеллект настоящего ученого и философский склад ума истинного мыслителя. В свое время он создал систему образов квантовой механики, теперь, четырнадцать лет спустя, он тщательно оттачивал систему ее понятий. После Бора стало ясно, что и соотношение неопределенностей, и корпускулярно-волновой дуализм — лишь частные проявления более общего принципа — принципа дополнительности.

<p><emphasis>ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ</emphasis></p>

Принцип, который Бор назвал дополнительностью,— одна из самых глубоких философских и естественнонаучных идей нашего времени, с которой можно сравнить лишь такие идеи, как принцип относительности или представления о физическом поле. Его общность не позволяет свести его к какому-либо одному утверждению — им надо овладевать постепенно, на конкретных примерах. Проще всего (так поступил в свое время и Бор) начать с анализа процесса измерения импульса р и координаты х атомного объекта.

Нильс Бор обратил внимание на очень простой и понятный факт: координату и импульс атомной частицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс р атомной частицы и при этом не очень сильно его изменить, необходим очень легкий подвижный «прибор». Но именно эта подвижность приводит к тому, что его положение весьма неопределенно.

Когда мы говорим в микрофон, то звуковые волны нашего голоса преобразуются там в колебания мембраны. Чем легче и подвижнее мембрана, тем точнее она следует за колебаниями воздуха. Но тем труднее определить ее положение в каждый момент времени. Для измерения координаты х мы должны поэтому взять другой, очень массивный прибор, который не шелохнется при попадании в него частицы. Но как бы ни изменялся в этом случае ее импульс, мы этого даже не заметим. Это — простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату х и импульс р. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополнительны друг другу.

Дополнительность — вот то слово и тот поворот мысли, которые стали доступны всем благодаря Бору. До него все были согласны, что несовместимость двух типов приборов непременно влечет за собой противоречивость свойств, измеряемых с их помощью. Бор отрицал такую прямолинейность суждений и разъяснял: да, свойства эти действительно несовместимы, но для полного описания квантового объекта оба они равно необходимы и поэтому не противоречат, а дополняют друг друга.

В действительности с такой ситуацией мы встречаемся повсеместно. Всем нам памятно детство, когда в солнечный день мы с помощью линзы поджигали бумагу и сухие былинки. Это — одна характеристика солнечного луча: он несет энергию в виде фотонов. Но если тот же солнечный луч пропустить не через линзу, а через призму, то мы увидим спектр. Это — другая, дополнительная характеристика того же луча: он состоит из волн различной длины. Линза и призма — различные приборы, которые позволяют нам наблюдать различные физические явления, характеризующие разные дополнительные свойства единого квантового объекта. Эти свойства нельзя наблюдать одновременно, в одном и том же опыте, с одним и тем же прибором, но они равно необходимы, чтобы представить себе сущность солнечного луча во всей его полноте.

Приведенное рассуждение о дополнительности двух несовместимых измерений можно пояснить простой аналогией. Представьте, что вы хотите узнать содержимое «черного ящика», который устроен специальным образом, а именно — наподобие хорошо известной камеры-обскуры. Эта камера, в отличие от обычной, имеет два отверстия и соответственно две фотопластинки на противостоящих им стенках ящика. Пока оба отверстия закрыты, мы ничего не знаем о предмете в ящике, он для нас попросту не существует. Открывая их поочередно, мы получим на фотопластинках две проекции изучаемого предмета. Каждая из них, взятая в отдельности, недостаточна, однако обе они равно необходимы для воссоздания объемной картины изучаемого объекта.

Перейти на страницу:

Похожие книги