Вся наука, вся диалектика, вся философия только и состоят из гипотез, потому что любой тезис, который высказывается в этих областях, имеет свой смысл только в том единственном случае, когда он и сам выведен из определенных оснований, печать которых он на себе несет, и, в свою очередь, когда является основополагающим принципом для всех своих дальнейших порождений. Трактат Евклида имеет то огромное преимущество перед многими другими античными изложениями геометрии, что он занимается именно "основами", и даже самый трактат его так и озаглавлен - "Основы", или "Элементы" (Stoicheia). Другими словами, геометрия Евклида является, как и всякая другая наука, системой гипотез в определенной области (с. 51-52):

д) Общий итог рассуждений Н.Гартмана о прокловской математической теории в комментарии Прокла на Евклида формулировать нетрудно. В этой работе Н.Гартмана имеется одно большое достоинство и один большой недостаток. Достоинство заключается в том, что при обсуждении математических теорий Евклида и Прокла Н.Гартман исходит из принципа гипотезы, а гипотеза у него трактуется как мысль, которая, оставаясь чистой мыслью, функционирует в то же самое время в качестве порождающей модели. Недостаток же работы Н.Гартмана - это ее неокантианская тенденция чистого логицизма, совершенно несвойственная ни Проклу, ни вообще античным мыслителям. Но и в этом логицизме Н.Гартман не очень последователен, поскольку он для всякой математической категории все же постулирует необходимость признавать принцип первоединого, который выше всякой логической структуры и без которого она распадается на дискретные части. Таким образом, логицизм Н.Гартмана не является у него окончательной конструкцией, а, скорее, является только одной из тенденций, правда, недостаточно осознанной.

В заключение нам хотелось бы указать еще одну работу, в которой специально рассматривается философия математики Прокла. Выше мы ее не указали потому, что она специально не занимается вопросом о гипотезе. Зато это - единственный систематический труд по философии математики Прокла. М.Steck написал целое исследование на эту тему, которое помещено в немецком переводе комментария Прокла на Евклида Р. Leander Schonberger'a (с. 3-152).

Эта работа весьма внимательно относится как к проблеме математической онтологии у Прокла, так особенно (что очень важно) и к структурным сторонам учения Прокла.

3. Красота точки

Исследования прокловского метода гипотезы во многих отношениях весьма поучительны. Однако, покамест мы не углубились в конкретный анализ каких-нибудь определенных гипотез у Прокла, до тех пор проблематика Прокла в этой области не станет для нас очевидной. Для своего анализа из огромного количества "гипотетических" проблем мы выбрали проблему точки и проблему круга. Их смысловая заряженность (вместо изолированно-метафизической абстрактности) и связанная с этим эстетическая выразительность прослеживаются в областях этих двух проблем весьма отчетливо.

а) Обсуждая проблему точки, Прокл, прежде всего, отгораживается как от чувственно-материального понимания точки, так и от ее абстрактно-логического определения. Чувственно-материальная точка обладает разными физическими свойствами, которые мы совершенно не мыслим, когда говорим о точке даже и в геометрии. Но и то геометрическое определение точки как чего-то лишенного частей тоже недостаточно и вторично. А Евклид именно и определяет точку как то, что не имеет частей. Для геометрии, возможно, это и правильно. Но для философии этого совершенно недостаточно, потому что определение не есть только отрицание чего-нибудь, но имеет также и свою положительную основу.

Дело в том, что конкретно взятая геометрическая точка всегда есть граница между разными частями прямолинейного отрезка. Как же то, что не имеет частей, может быть границей? Кроме того, линия есть граница плоскости, а плоскость является границей трехмерного тела. Трехмерное тело тоже имеет свою границу, которая только и делает его трехмерным телом определенного вида. Во всех этих случаях происходит соприкасание одного геометрического элемента с другим, а в случае трехмерного тела - совпадение с самим собою. Но для всякого соприкасания необходима хотя бы одна точка, в которой происходит соприкасание. И как же возможно такое соприкасание, если точка вообще выходит за пределы всяких соприкасающихся элементов и даже лишена вообще всякой разделенности, которая необходима для границы соприкасающихся элементов? Значит, точка, отделяющая одну телесную и делимую область от другой, необходимым образом должна содержать в себе и этот материальный момент (In Eucl. 85, 1 - 87, 16).

Перейти на страницу:

Все книги серии История античной эстетики

Похожие книги