В естественных экосистемах лишь 1 % солнечной энергии поглощается листьями и используется для фотосинтеза. Она улавливается и запасается в виде потенциальной энергии органического вещества. За счет их разложения удовлетворяются энергетические потребности всех остальных компонентов экосистем. Подсчитано, что примерно такого же процента солнечной энергии достаточно для обеспечения всех нужд транспорта, промышленности и нашего быта. Кроме того, независимо от того, будем мы ее использовать или нет, на энергетическом балансе Земли и состоянии биосферы это никак не отразится. Весь вопрос в том, как преобразовывать энергию падающего излучения Солнца в доступную для практического использования электрическую энергию. Также надо уметь запасать солнечную энергию, чтобы поддерживать энергоснабжение ночью и в пасмурные дни. Сейчас энергия солнечного излучения в основном используется для получения в основном низкопотенциальной тепловой энергии (до 1000С) для нужд коммунального хозяйства, в сельском хозяйстве и частично в промышленности. Это различного рода водо- и воздухонагреватели, теплицы, сушилки, опреснители воды и т.д. Световое излучение можно улавливать и использовать непосредственно, когда оно достигает Земли. Это называется прямым использованием солнечной энергии. Существует несколько таких методов, доступных в настоящее время.

1. Фотогальванические элементы (ФГ) или фотоэлектрические преобразователи. Поток фотонов от Солнца попадает на верхнюю часть двухслойного полупроводника (например, кремния). Фотоны возбуждают электроны, и они мигрируют к поверхности раздела между кремнием различных типов. При этом создается избыток электронов на верхней поверхности раздела, поэтому здесь образуется разность потенциалов. Такая разность потенциалов составляет около 0,8В. Для того чтобы получить больший потенциал, следует соединить последовательно большее число кремниевых элементов. При увеличении площади кремния элементов можно получить ток желаемой величины. В этом случае используются полупроводниковые свойства кремния Si (или германия Ge). Полупроводник – вещество, электрическое сопротивление которого имеет промежуточное значение между значениями электрических изоляторов (диэлектриков) и проводников. Полупроводники n-типа (электронные) имеют в кристаллической решетке избыточные электроны, а следовательно, обладают эффективным отрицательным зарядом. Полупроводники р-типа (дырочные) имеют в кристаллической решетке «электронные дырки», то есть эффективные положительные заряды. Электроны, текущие через кремниевую пластинку р-типа, останавливаются на стыке (переходе) между двумя пластинками. Этот стык называется n-р-переходом. Электроны, идущие в обратном направлении, проходят через переход, чтобы заполнить «дырки» в слое р-типа.

При осуществлении фотогальванического метода преобразования энергии возникают трудности экономического характера. К таким трудностям относится получение кремния нужного качества. SiО2 (кремнезем), является одним из наиболее распространенных веществ на Земле. Но для получения химически чистого кремния, необходимо осуществить восстановительную стадию, чтобы выделить материал из имеющегося в изобилии кремнезема. Трудности заключаются в следующем:

• для ФГЭ нужно получить материал исключительно высокой чистоты. Электроны, возбужденные фотонами, теряют энергию при столкновении с атомами примесей; при этом они теряют высокую энергию, которой обладали в зоне проводимости, и, попадая снова в валентную зону вещества (если это полупроводник) с меньшей энергией, больше не участвуют в диффузии. В результате они не достигают поверхности раздела между двумя типами кремния и не участвуют в создании разности потенциалов.

• кремний нужно получить в виде монокристалла или в виде материала с высокой степенью монокристалличности. Так как большинство материалов являются поликристаллическими, т.е. состоят из большого числа индивидуальных кристалликов, то возбужденные электроны будут перемещаться от одного кристаллика к другому, дезактивируясь при столкновении с гранями кристалликов. Из-за этого лишь незначительное число электронов достигнет поверхности раздела, и примет участие в создании разности потенциала. Достаточно высоким напряжением обладают только чистые монокристаллы кремния. Поэтому этот метод использования энергии Солнца является весьма дорогостоящим. Но в противоположность атомной энергетике преобразователь солнечной энергии является целиком и полностью «чистым».

Перейти на страницу:

Поиск

Похожие книги