Один из циклов
4HBr + Cu2O -> 2CuBr2 + H2O + H2 (1000C);
2CuBr2 + 2Cu(OH)2 -> 2CuO + 2CuBr2 + 2H2O (1000C);
2CuO -> Cu2O + 1/2O2 (1000C).
• при горении водорода на воздухе развиваются температуры, достаточные для окисления азота. Поэтому кроме воды среди продуктов горения есть некоторое количество оксидов азота NхОу;
• добыча водорода из его природных соединений в соответствии с законом сохранения энергии требует столько же энергии (в реальных условиях несколько больше), сколько мы получим при окислении водорода. Следовательно, необходимо затратить эквивалентное количество первичной энергии, которая не является экологически чистой. Значит, загрязнение из одного региона (где водорода потребляют) переносится в другой (где его получают);
• низкая плотность, взрывоопасность, высокая диффузионная подвижность требуют для работы с водородом новых материалов и технологий, которые вряд ли будут экологически чистыми;
• еще одна проблема – это аккумулирование водорода. Расход водорода, как и любого другого энергоносителя, будет неравномерным. Следовательно, нужно заранее проектировать устройства для его аккумулирования. На сегодня лучшими являются интерметаллические аккумуляторы (трехкомпонентные сплавы на основе редкоземельных элементов). Следовательно, нужно увеличение производства редкоземельных элементов, что не безопасно с точки зрения охраны окружающей среды.
Таким образом, использование нетрадиционных возобновляемых источников энергии и энергосбережение, возможно, решат энергетические проблемы.
Немецкие ученые подсчитали
биомасса – 5,6;
гидроэнергия – 2,8;
энергия ветра – 2,8;
геотермальная энергия – 1,9;
энергия приливов – 0,9;
энергия Солнца – 6,3;
Для сравнения – первичной энергии используется 9 млрд. тонн условного топлива.
1. Проблемы энергетики и причины их возникновения.
2. Какова роль химии в решении энергетических проблем?
3. Классификация энергоресурсов.
4. Традиционные виды топлива, их характеристика.
5. Основные продукты переработки нефти.
6. Перспективы развития синтетического топлива.
7. Влияние энергетики на окружающую среду.
8. Что такое тепловыделяющие элементы, где их используют?
9. Проблемы ядерной энергетики.
10. Альтернативные источники энергии, их характеристика.
11. Какие существуют альтернативные источники энергии, в использовании которых преобладают химические процессы?
12. Какие способы получения водорода вам известны?
13. Что такое биогаз? Способы его получения.
ХИМИЧЕСКИЕ ОСНОВЫ СОЗДАНИЯ И ЭКСПЛУАТАЦИИ МАТЕРИАЛОВ
По составу материалы делят на:
• металлические материалы;
• материалы на основе высокомолекулярных соединений;
• неметаллические неорганические материалы;
• керамические материалы;
• композиты
МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ
Металлические материалы, как правило, обладают высокой тепло- и электропроводностью, механической прочностью, вязкостью, упругостью и хорошей пластичностью в сочетании с технологичностью обработки (ковкость, свариваемость, обрабатываемость режущими инструментами, существенные изменения эксплуатационных свойств в результате термической и химико-термической обработки). Наиболее распространенными являются металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза, латунь), никеля и хрома. Практически все переходные металлы и лантаниды, а также многие непереходные металлы выступают в качестве компонентов сплавов. Если металлы и сплавы в ряде случаев и уступают свои позиции неметаллическим материалам, то это связано в первую очередь с коррозией металлов, т.е. с их химическим разрушением под действием окружающей среды. Коррозии подвергаются и любые неметаллические материалы (например, полимеры, керамика и стекла), но чаще всего говорят о коррозии металлов, так как она наносит максимальный вред из-за относительно высокой скорости этого процесса, значительной стоимости металлических конструкций и ограниченности природных ресурсов металлов. Например, каждая шестая домна в России работает, чтобы возместить прямые потери металлов от коррозии.