Для обозначения чисел до десяти применялось всего три различных знака, тогда как нам теперь нужно десять. Например, 1905 выражалось по-римски также четырьмя знаками: MCMV. Но понятно, что чем числа были больше, тем больше новых знаков требовалось, так что шестизначные, миллионные числа требовали уже 12 различных знаков для своего выражения. Кроме того, приходилось повторять основной знак столько раз, сколько единиц данной категории заключалось в числе. Таким образом римляне, чтобы передать наше 4687, должны были писать MMMMDCLXXXVII – 13 цифр вместо наших четырех. Понятно, что эта громоздкая система очень затрудняла счет.
Греческая цифровая система была немногим проще, потому что была чисто буквенной. Единицы означались первыми девятью буквами алфавита, десятки – вторыми девятью, сотни – третьими, тысяча – 28-й буквой и 10000 – 29-й буквой алфавита. Хорошо еще, что у них было так много букв! И то приходилось пользоваться условными дополнительными знаками для обозначения более высоких чисел. Нетрудно представить себе, как неудобно было производить даже простые арифметические действия с такой системой и какие преимущества представляет система «арабских» цифр, которыми мы теперь пользуемся.
Все дело было в том, чтобы сообразить, что для обозначения любого числа, как бы велико оно ни было, совершенно достаточно девяти первых знаков, выражающих единицы. Нужно только иметь способ различать порядковые категории их, то есть как-нибудь отмечать, означают ли они число единиц, десятков, сотен, тысяч или миллионов. Ведь ясно, что число 4687 можно было бы написать и по буквенной системе: Г тысяч, Е сотен. 3 десятков, Ж единиц, и даже просто ГЕЗЖ. Важно было, следовательно, установить определенный порядок в написании знаков, выражающих число, то есть чтобы тот же знак, в зависимости от места, которое он занимает в ряду, выражающем число, мог означать или число единиц, или число десятков, или сотен и т. д. Мы с детства знаем эту систему, и она нам кажется очень простой. Но построить ее было трудно. Для этого требовался большой ум и много труда. Понятия десяток, сотня, тысяча, казалось, требовали собственных отличительных знаков. И вообще числовой знак представлялся выражением определенного числа, действительной величины. А как же быть, если надо написать например число сто три или сто тридцать? Если изображать буквами, АВ будет значить только 13. Помогли здесь приемы механического счета.
Для сложения и вычитания удобно было писать единицы под единицами, десятки под десятками и т. д. Так возникла счетная доска, абак: абак – греческое слово, заимствованное с арабского, где оно значило буквально песок. Из этой счетной доски впоследствии создались конторские счеты. Первоначально это была доска с бортами, посыпанная песком; ее разделяли вертикальными чертами на графы для единиц, десятков, сотен и т. д., и в эти графы вписывали цифры посредством острой палочки. Позднее пользовались деревянной или каменной доской, разграфленной таким же образом, а счет производился посредством камешков: сколько в числе имелось единиц, десятков, сотен и тысяч, столько в каждой полосе клалось камешков. Камешек по-латыни зывался калькулус (calculus); от латинского слова, означающего камень, создано и название химического элемента кальция, составляющего основу известняка*. [*Оксфордский этимологический словарь прослеживает происхождение кальция от латинского calx (известь).
Происхождение наших счетов из подобной счетной доски понятно: вместо проведенной на ней черты – натянутая проволока, вместо отдельного набора камешков – 10 шариков, надетых на каждую проволоку, вместо доски – рамка. Прибор стал легче, проще и удобнее.
Применение подобной счетной доски вводило в сущности «арабскую» систему счета, так как благодаря последовательному расположению граф те же самые камешки служили для показания единиц, десятков, сотен и т. д. в данном числе. Но это еще не значило изобрести «арабскую» систему цифр. Для этого нужно было додуматься еще до одной идеи, которая не так-то легко приходит в голову. Необходимо было создать понятие нуль, составляющего самую душу этой системы.