20. Выполните эксперимент, посвященный сравнению временных затрат при работе с классами vector и list. Способ измерения длительности работы программы изложен в разделе 26.6.1. Сгенерируйте vector (после каждой вставки увеличивающийся на один элемент). Храните объект класса vector в упорядоченном виде; иначе говоря, значение должно быть вставлено так, чтобы все предыдущие значения были меньше или равны ему, а все последующие значения должны быть больше него. Выполните тот же эксперимент, используя класс list для хранения целых чисел. При каких значениях list обеспечивает более высокое быстродействие, чем класс vector? Попробуйте объяснить результаты эксперимента. Впервые этот эксперимент был предложен Джоном Бентли (John Bentley).
Послесловие
Если бы у нас было
Глава 21
Алгоритмы и ассоциативные массивы
“Теоретически практика проста”.
Тригве Рийнскауг (Trygve Reenskaug)
В этой главе мы завершаем описание идей, лежащих в основе библиотеки STL, и наш обзор ее возможностей. Здесь мы сосредоточим свое внимание на алгоритмах. Наша главная цель — ознакомить читателей с десятками весьма полезных алгоритмов, которые сэкономят им дни, если не месяцы, работы. Описание каждого алгоритма сопровождается примерами его использования и указанием технологий программирования, которые обеспечивают его работу. Вторая цель, которую мы преследуем, — научить читателей писать свои собственные элегантные и эффективные алгоритмы в тех случаях, когда ни стандартная, ни другие доступные библиотеки не могут удовлетворить их потребности. Кроме того, мы рассмотрим еще три контейнера: map, set и unordered_map.
21.1. Алгоритмы стандартной библиотеки
Стандартная библиотека содержит около шестидесяти алгоритмов. Все они иногда чем-то полезны; мы сосредоточим внимание на часто используемых алгоритмах, которые используются многими, а также на тех, которые иногда оказываются очень полезными для решения какой-то задачи.
==, а упорядочивание — на основе оператора < (меньше). Алгоритмы из стандартной библиотеки определены в заголовке . Более подробную информацию читатели найдут в приложении Б.5 и в источниках, перечисленных в разделе 20.7. Эти алгоритмы работают с одной или двумя последовательностями. Входная последовательность определяется парой итераторов; результирующая последовательность — итератором, установленным на ее первый элемент. Как правило, алгоритм параметризуется одной или несколькими операциями, которые можно определить либо с помощью объектов-функций, либо собственно функций. Алгоритмы обычно сообщают о сбоях, возвращая итератор, установленный на конец входной последовательности. Например, алгоритм find(b,e,v) вернет элемент e, если не найдет значение v.
21.2. Простейший алгоритм: find()
Вероятно, простейшим из полезных алгоритмов является алгоритм find(). Он находит элемент последовательности с заданным значением.
template
In find(In first, In last, const T& val)
// находит первый элемент в последовательности [first,last], равный val
{
while (first!=last && *first != val) ++first;
return first;
}
Посмотрим на определение алгоритма find(). Естественно, вы можете использовать алгоритм find(), не зная, как именно он реализован, — фактически мы его уже применяли (например, в разделе 20.6.2). Однако определение алгоритма find() иллюстрирует много полезных проектных идей, поэтому оно достойно изучения.