• μ(n) = 0, если среди делителей числа n есть квадрат.

• μ(n) = −1, если число n простое или является произведением нечетного числа различных простых чисел.

• μ(n) = 1, если число n является произведением четного числа различных простых чисел.

Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):

V.

B истории Гипотезы Римана наряду с самой функцией μ(n) не меньшую роль играет ее нарастающее значение, т.е. результат сложения μ(1) + μ(2) + μ(3) + … + μ(k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k = 1, 2, 3, …, 10) равны 1, 0, −1, −1, −2, −1, −2, −2, −2, −1. Функция M(k) весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, −6, −9, 2, 0, −25, −1, 1, −23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, −247, 107, 192, −709, 257, −184, −189, −340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k) возрастает, но помимо этого никакой ясной картины не просматривается.

Из выражения (15.5) видно, что поведение функций μ и M (накапливающейся μ) жестко привязано к дзета-функции, а тем самым и к Гипотезе Римана. На самом деле если вам удастся доказать приведенную ниже теорему 15.1, то вы сможете заключить, что Гипотеза Римана верна!

Теорема 15.1

M(k) = Ο(k1/2).

Однако если теорема 15.1 не верна, то отсюда еще не следует, что не верна Гипотеза. Математики говорят, что теорема 15.1 сильнее Гипотезы.[139] Слегка ослабленный вариант, сформулированный как теорема 15.2, в точности равносилен Гипотезе:

Теорема 15.2

M(k) = Ο(k1/2+ε) для любого сколь угодно малого числа ε.

Если теорема 15.2 верна, то верна и Гипотеза; а если она не верна, то не верна и Гипотеза. Это в точности эквивалентные теоремы. Мы еще вернемся к этому в главе 20.vi.

<p>Глава 16. Вверх по критической прямой</p>I.

В 1930 году Давиду Гильберту исполнилось 68 лет. В соответствии с принятыми в Геттингенском университете правилами он вышел на пенсию. Посыпались почести. Среди них — решение властей Кенигсберга предоставить прославленному сыну этого города почетное гражданство. Церемония должна была состояться на открытии запланированного на осень того года съезда Общества немецких ученых и врачей. Понятно, что случай обязывал к ответному слову. Таким образом, 8 сентября 1930 года в Кенигсберге Гильберт выступил со своей второй великой публичной речью.

Его выступление было озаглавлено «Логика и познание природы». Цель Гильберта состояла в том, чтобы высказать некоторые положения о связи между нашим внутренним миром — нашими умственными процессами, включая и те, с помощью которых мы создаем и доказываем математические истины, — и физической вселенной. Подобные идеи, разумеется, имеют долгую философскую родословную, особую роль в которой сыграл другой великий сын Кенигсберга — живший в XVIII веке философ Иммануил Кант. По существу, как мы увидим в главе 20, Гильберт высказал идеи, имеющие отношение к современному пониманию Гипотезы Римана. Впрочем, во время выступления Гильберта в Кенигсберге никто этого, конечно, не знал.

Было предусмотрено, что после окончания выступления Гильберт повторит его сокращенный вариант по местному радио — в те времена, понятно, бывшему новинкой. Этот сокращенный вариант речи Гильберта был записан и издан на граммофонной пластинке (78 оборотов в минуту). (В Веймарской Германии, похоже, слова «математик-знаменитость» не содержали в себе внутреннего противоречия). В наши дни эту запись можно найти в Интернете. Сделав лишь небольшое усилие, вы услышите, как голос самого Гильберта произносит шесть слов, за которые его более всего помнят и которые выгравированы на его надгробии на Геттингенском кладбище. Это последние слова кенигсбергской речи.

Гильберт твердо верил в неограниченную мощь человеческого разума в постижении истин и природы, и математики. Во времена его юности определенной популярностью пользовались пессимистические теории французского философа Эмиля Дюбуа-Реймона. Дюбуа-Реймон утверждал, что определенные вещи — например, природа материи и человеческого сознания — в принципе непознаваемы.[140] Ему принадлежит тезис ignoramus et ignorabimus — «мы не знаем и не узнаем». Гильберту никогда не импонировала эта мрачная философия. И теперь, когда весь мир (во всяком случае, вся его научно-математическая часть) внимал его словам, он ясно заявил о своем несогласии:

Перейти на страницу:

Все книги серии Элементы

Похожие книги