Как я сказал, перфекционизм — частая проблема среди математиков, из-за которой чтение опубликованных математических статей нередко превращается в очень тяжелое занятие. В одной из книг, получивших некоторую известность в современной психологической литературе, «Представление себя в повседневной жизни», Эрвинг Гоффман развивает теорию «социальной драматургии», согласно которой каждый результат деятельности, создаваемый «для внутреннего пользования» в беспорядке и не без вмешательства случайности, представляется «для внешней аудитории» в виде законченного и совершенного творения. Эту мысль хорошо иллюстрируют рестораны. Блюда, приготовленные среди стука и звона посуды, криков поваров в раскаленной кухне, предстают перед публикой как творения безупречно сервированные, на сверкающих тарелках, подаваемые проворными мурлыкающими официантами. В значительной своей части так же устроен и интеллектуальный труд. Вот что пишет Гоффман:

В тех взаимодействиях, где индивид представляет результат своей деятельности другим людям, он склонен обнародовать только конечный продукт; они же судят о нем на основе вещей законченных, отполированных и расфасованных. В ряде случаев, если для завершения деятельности было достаточно лишь очень небольшого усилия, этот факт будет скрыт. В других случаях сокрытию подлежат долгие, изнурительные часы одинокого труда…

Опубликованные математические статьи нередко содержат слегка раздражающие высказывания типа «Отсюда следует, что…» или же «Ясно, что…», тогда как в действительности совершенно не следует и абсолютно не ясно, пока вы не потратите те же шесть часов, что потратил автор, на прописывание промежуточных шагов и проверку их правильности. Об английском математике Г.X. Харди, с которым мы еще встретимся ниже, рассказывают такую историю. Дойдя на лекции до определенного места в своих рассуждениях, он сказал: «Теперь очевидно, что…» Тут он остановился, замолчал и несколько секунд простоял без движения с нахмуренными бровями. Потом вышел из аудитории. Минут через двадцать он вернулся, улыбаясь, и продолжил: «Да, действительно, очевидно, что…»

Но кроме отсутствия амбиций Гаусс демонстрировал и отсутствие такта. Он нажил массу неприятностей в общении с коллегами-математиками из-за того, что ссылался на открытия, которые он сделал, но не опубликовал за годы до того, как другие открывали то же самое, однако публиковали свои результаты. Дело было не в тщеславии — Гауссу не было свойственно тщеславие, — а в том, что доктор Джонсон называл «грубой бесчувственностью». Например, в опубликованной в 1809 году книге Гаусс ссылается на метод наименьших квадратов, придуманный им в 1794 году (способ найти наилучшую «подгонку» для некоторого количества экспериментальных данных). В момент, когда он сделал это открытие, он его, разумеется, не опубликовал. Принадлежащий к чуть более старшему поколению французский математик Адриен-Мари Лежандр открыл и опубликовал этот метод в 1806 году; он был разъярен, когда Гаусс приписал приоритет открытия себе. У нас нет сомнений в правоте Гаусса — тому имеются документальные подтверждения, — но если Гаусс желал, чтобы его имя ассоциировалось с этим результатом, ему надо было его опубликовать. Он, однако, не беспокоился, будет ли увековечено его имя, и не намеревался публиковать свои результаты, если ему не хватало времени отполировать их до полного совершенства.

III.

В декабре 1849 года Гаусс вел переписку с немецким астрономом Йоханом Францем Энке (именем которого названа знаменитая комета)[24] Энке высказал кое-какие комментарии по поводу частоты появления простых чисел. Ответное письмо Гаусса начиналось так:

Перейти на страницу:

Все книги серии Элементы

Похожие книги