42  43  44  45  46  47  48  49  50  51

 52  53  54  55  56  57  58  59  60  61

 62  63  64  65  66  67  68  69  70  71

 72  73  74  75  76  77  78  79  80  81

 82  83  84  85  86  87  88  89  90  91

 92  93  94  95  96  97  98  99 100 101

102 103 104 105 106 107 108 109 110 111

Теперь, начиная с 2 и сохраняя при этом саму двойку в неприкосновенности, уберем каждое второе число после 2.

  2   3   .   5   .   7   .   9   .  11

  .  13   .  15   .  17   .  19   .  21

  .  23   .  25   .  27   .  29   .  31

  .  33   .  35   .  37   .  39   .  41

  .  43   .  45   .  47   .  49   .  51

  .  53   .  55   .  57   .  59   .  61

  .  63   .  65   .  67   .  69   .  71

  .  73   .  75   .  77   .  79   .  81

  .  83   .  85   .  87   .  89   .  91

  .  93   .  95   .  97   .  99   . 101

  . 103   . 105   . 107   . 109   . 111

Первое выжившее число после двойки — это 3. Сохраняя теперь 3 в неприкосновенности, удалим каждое третье число после 3, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .  25   .   .   .  29   .  31

  .   .   .  35   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .  55   .   .   .  59   .  61

  .   .   .  65   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .  85   .   .   .  89   .  91

  .   .   .  95   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число после тройки — это 5. Сохраняя теперь 5 в неприкосновенности, удалим каждое пятое число после 5, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .   .   .   .   .  29   .  31

  .   .   .   .   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .   .   .   .   .  59   .  61

  .   .   .   .   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .   .   .   .   .  89   .  91

  .   .   .   .   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число — это 7. Следующий шаг состоит в том, чтобы, сохраняя теперь 7 в неприкосновенности, удалить каждое седьмое число после 7, если его еще не удалили до этого. Первое число, которое выживает после этого, — 11. И так далее.

Если проводить эту процедуру бесконечно, то оставшимися числами будут все простые числа. В этом и состоит «решето Эратосфена». Если остановиться прямо перед тем, как пришло время обрабатывать простое число p — другими словами, прямо перед тем, как надо будет удалять каждое p-е число, если оно еще не было удалено, — то мы получим все простые числа, меньшие p2. Поскольку выше мы остановились прямо перед обработкой семерки, у нас имеются все простые до 72, т.е. 49. После этого числа остаются и не простые числа, такие как 77.

III.

Решето Эратосфена — вещь достаточно простая. И ему уже 2230 лет. Как же оно перенесет нас в середину XIX века, к глубоким результатам в теории функций? А вот как.

Я собираюсь повторить только что проведенную процедуру. (Именно по этой причине мы разобрали ее столь тщательно.) Но на этот раз я применю ее к дзета-функции Римана, которую мы определили в конце главы 5. Дзета-функция от некоторого аргумента s, большего единицы, записывается как

Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел — в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).

Сделаем такое: умножим обе части равенства на . Получим

Перейти на страницу:

Все книги серии Элементы

Похожие книги