Можно ли и логарифмическую функцию продолжить на комплексные числа? Да. И получится, разумеется, в точности функция, обратная к показательной. Если ez = w, то z = ln w. К сожалению, как и в случае квадратных корней, если мы не соблюдем меры предосторожности, мы тут же попадем в зыбучие пески многозначных функций. Это происходит из-за того, что в комплексном мире показательная функция иногда принимает одно и то же значение при различных аргументах. Например, куб числа −1, в соответствии с правилом знаков, есть −1; так что возведение в куб обеих частей равенства eπi = −1 дает e3πi = −1; таким образом, аргументы πi и 3πi дают одно и то же значение функции, равное −1, подобно тому как −2 и +2 дают при возведении в квадрат одно и то же значение 4. Тогда что же такое ln (−1)? Это πi? Или же 3πi?

Это πi. Чтобы не наживать лишних неприятностей, ограничим мнимую часть значений функции отрезком от −π (не включая) до π (включая). Тогда для всякого ненулевого комплексного числа имеется его логарифм, причем ln (−1) = πi. На самом деле, если использовать обозначения, введенные в главе 11.v, то ln z = ln |z| + iΦ(z), где Φ(z), разумеется, измеряется в радианах. В таблице 13.3 показан «моментальный снимок» логарифмической функции с точностью до шести знаков после запятой. Аргументы здесь изменяются «по умножению» (каждая строка получается умножением 1 + i на предыдущую строку), а значения функции — «по сложению» (всякий раз прибавляется 0,346574 + 0,785398i).

zln z
−0,5i−0.693147 − 1,570796i
0,5 − 0,5i−0,346574 − 0,785398i
10
1 + i0,346574 + 0,785398i
2i0,693147 + 1,570796i
−2 + 2i1,039721 + 2,356194i
−41,386295 + 3,141592i
−4 − 4i1,732868 − 2,356194i

Таблица 13.3. Логарифмическая функция.

Итак, у нас есть логарифмическая функция. Единственное усложнение заключается в том, что, когда мнимая часть значения функции становится больше π, как это случается при переходе от аргумента −4 к аргументу −4 − 4i, приходится вычитать 2πi, чтобы остаться в нужных пределах (2π радиан равны 360 градусам; мы помним из главы 11.v, что радианы — это просто способ измерения углов, который больше всего любят математики). Но это не причиняет на практике никаких неудобств.

II.

Коль скоро имеются показательная и логарифмическая функции от комплексных чисел, нет причин, запрещающих возводить любое комплексное число в любую комплексную степень. Согласно 8-му правилу действий со степенями из главы 5.ii любое вещественное число a равно eln a, а тогда по 3-му правилу ax — это просто-напросто exln a. Нельзя ли распространить эту идею в мир комплексных чисел и сказать, что для любых двух комплексных чисел z и w выражение zw означает просто-напросто ewln z?

Можно, конечно, и именно так и делается. Если пожелать возвести −4 + 7i в степень 2 − 3i, то надо сначала вычислить логарифм числа −4 + 7i, который оказывается равным примерно 2,08719 + 2,08994i. Затем надо умножить это на 2 − 3i, что даст 10,4442 − 2,08169i. И теперь возвести число e в эту степень, что и даст окончательный результат −16793,46 − 29959,40i. Итак,

(−4 + 7i)2 − 3i = −16793,46 − 29959,40i.

Ничего сложного! Еще пример: поскольку −1 = eπi, извлечение квадратного корня из обеих частей даст i = eπi/2. И если теперь возвести обе части в степень i, то, снова пользуясь 3-м правилом действий со степенями, получим ii = e−π/2. Заметим, что это вещественное число, равное 0,2078795763….

Поскольку можно возводить любое комплексное число в любую комплексную степень, несложным должно оказаться возведение вещественного числа в комплексную степень. Следовательно, для заданного комплексного числа z можно вычислить 2z, 3z, 4z и т.д. Понятно, к чему идет дело. Можно ли расширить область определения дзета-функции

в мир комплексных чисел? Можно, конечно. С комплексными числами, доложу вам, можно делать что угодно.

III.

Поскольку формула для дзета-функции остается бесконечной суммой, возникает вопрос о сходимости. Оказывается, что сумма сходится для любого комплексного числа, вещественная часть которого больше единицы. Математики скажут «в полуплоскости Re(s) > 1», где Re(s) используется для обозначения вещественной части числа s.

Перейти на страницу:

Все книги серии Элементы

Похожие книги