17* Инерциальная система наведения не нуждается в поступающей извне информации: для определения элементов движения акселерометрами измеряются ускорения, возникающие в трех различных направлениях при полете ракеты (как известно, возникновение ускорения можно «засечь», измеряя, например, изменение веса тела известной массы). Интегрирование показаний акселерометров дает возможность получить всю необходимую информацию, но для надежности, данные «инерциалки» корректируются: периодически включается радиовысотомер и цифровая карта местности под летящей ракетой сравнивается с данными, хранящимися в памяти бортового компьютера (их заранее получают при помощи спутников). Маршевый полет таких ракет происходит в основном на малых высотах, а при подлете к цели – на бреющем. В дни проведения операции «Буря в пустыне» (1991 г.) телевидение показывало «Томахоки», летящие к целям вдоль багдадских проспектов ниже уровня крыш некоторых «высоток», что исключало их своевременное обнаружение средствами ПВО

<p>5.10. Опыты со сверхпроводниками. Взрывы выбивают стекла и магнитное поле из железных пластин</p>

В ходе февральской и апрельской сессий проводились не только нудные опыты по оптимизации ЦУВИ. Попросил о помощи Слепцов из НИИВТ: он хотел определить критические токи в создаваемых его лабораторией высокотемпературных сверхпроводниках – микронной толщины пленках из YBa2 Cu3 07 , нанесенных на подложки из искусственного сапфира. Как предполагал Слепцов, токи, при которых такие пленки должны переходить из разряда сверхпроводников в плохие изоляторы, составляли килоамперы. Но скачки сопротивления ведут к скачкам тока в контуре, что не может не сопровождаться существенным изменением магнитного момента, второй производной которого по времени, как известно, пропорциональна мощность РЧЭМИ. Пришлось попросить, чтобы пленки были напылены на сапфировые подложки в виде колец.

В опытах (рис. 5.19) одновитковый соленоид из меди 1 окружал кольцо 2. Оба погружалось в жидкий азот 3, где кольцо и обретало сверхпроводимость. От арзамасского ВМГ снабженного узлом разрыва, в соленоиде 1 формировался импульс тока с коротким (в с огню наносекунд) фронтом. Индуктивность соленоида вначале мала, потому что внутри него находилась сверхпроводящая вставка, поэтому возрастание тока определяется только возможностями формирователя. Магнитное поле сосредотачивалось в узком зазоре между сверхпроводником и соленоидом: в сверхпроводник оно не могло проникнуть, потому что там индуцировался ток, полностью его компенсировавший, а в соленоид из меди хоть и проникало, но – медленно. Когда же гок в сверхпроводнике превышал критическое значение, возникал фазовый переход, по одну сторон которого пленка была еще сверхпроводящей, а по другую – проводила плохо. Фронт перехода двигался от периферии кольца к его оси и оказалось, что скорость его довольно велика (десяток километров в секунду или – сантиметр в микросекунду), но слабо зависит от индукции внешнего магнитного поля. Это позволяло за те доли микросекунды, пока магнитное поле «ест» сверхпроводимость имевшего ширину в несколько миллиметров кольца, успеть «накачать» существенную энергию в соленоид. Когда же фронт фазового перехода достигал внутренней границы кольца, ток, а значит, и магнитный момент менялись очень быстро. Оказалось, что эмиссия РЧЭМИ существенна, хотя и уступает по мощности излучению ЦУВИ почти два порядка.

Ценность сверхпроводникового излучателя состояла в том, что его можно было сделать невзрывным (например, получив импульс тока в соленоиде от кабельного формирователя), и в этом качестве использовать для исследований воздействия сверхширокополосного РЧЭМИ на электронику в лабораторных, а не полигонных условиях, что во многих случаях более удобно.

Результаты опытов по определению критических токов в сверхпроводниках были представлены на конференции в Самарканде. Был представлен на международной конференции и доклад об излучателе.

Перейти на страницу:

Похожие книги