Ещё одним свидетельством является тот факт, что хромосомы замусорены старым генетическим текстом, который больше не используется, но который всё ещё имеет распознаваемый смысл. Эти разбросанные «генетические окаменелости» компьютерному программисту до жути напоминают схему распределения обрывков текста на поверхности старого диска, активно использовавшегося для редактирования текста. У некоторых животных большая доля от общего числа генов никогда не читается. Эти гены являются или полной бессмыслицей, или устаревшими «ископаемыми генами».
Но изредка эти текстовые окаменелости оживают — как у меня однажды было при написании этой книги. Из-за компьютерной ошибки (хотя будем честны — возможно, это была человеческая ошибка) я случайно «стёр» диск, содержащий главу 3. Конечно, сам текст не был стёрт буквально. Однозначно стёрты были лишь указатели на места, где начинался и заканчивался каждый «экзон». «Официальная» операционная система не могла прочесть ничего, но «неофициально» я смог поиграть в генного инженера и исследовать весь текст на диске. Я увидел запутанную мозаику текстовых фрагментов, часть из которых были недавними, часть — древними «окаменелостями». Сводя воедино фрагменты этой мозаики, я смог восстановить главу. Чаще всего я не знал, какие фрагменты были свежими, какие — древними. Но по большому счёту это не имело значения — кроме незначительных деталей, требовавших некоторого повторного редактирования, фрагменты были одинаковы. Таким образом, снова возродились по крайней мере некоторые из «окаменелостей», или устаревших «интронов». Они вывели меня из затруднительного положения и уберегли меня от хлопот по переписыванию всей главы. Есть свидетельства, что у живых видов «ископаемые гены» также иногда «возрождаются к жизни» и снова используются после миллионолетнего бездействия. Углубление в детали увело бы нас слишком далеко от главной темы этой главы, а мы и так уже от неё отклонились. Главное — уяснить мысль о том, что, полный объём генетической информации вида может увеличиваться дублированием генов. Повторное использование старых «ископаемых» копий существующих генов — это один путь такого дублирования. Есть и другие, более прямолинейные пути, которые приводят к копированию генов в широко разбросанные части хромосом — наподобие файлов, продублированных в различные области диска или на другие диски.
У людей на различных хромосомах есть восемь отдельных генов, называемых генами глобина (он, среди прочего, используется для создания гемоглобина). Представляется несомненным, что все они изначально были скопированы с единственного предкового гена глобина. Примерно 1100 миллионов лет назад, прародительский ген глобина сдублировался, образовав два гена. Мы можем датировать этот случай по независимым свидетельствам, опираясь на обычную скорость эволюции глобинов (см. главы 5 и 11). Один из этих двух генов, порождённый этим изначальным дублированием, стал прародителем всех генов, вырабатывающих гемоглобин у позвоночных. Другой — стал прародителем всех генов, производящих миоглобины, родственное семейство белков, работающих в мышцах. Последующие дублирования породили так называемые альфа, бета, гамма, дельта, эпсилон и зета глобины. Интересно, что из всех генов глобина мы можем построить полное генеалогическое древо и даже проставить даты всех точек дивергенции (дельта и бета глобин разошлись, например, примерно 40 миллионов лет назад, эпсилон и гамма-глобин — 100 миллионов лет назад). Все эти восемь глобинов, порождённые этими древними ветвлениями у наших отдалённых прародителей, по прежнему находятся внутри каждого из нас. Они разошлись в различные части хромосом нашего прародителя, и мы наследуем их в наших различных хромосомах. Каждая из этих молекул разделяет одно тело со своими далёкими молекулярными кузенами. Без сомнения, что такое дублирование случалось за геологическое время многократно и на всех хромосомах. В этом важном отношении реальная жизнь сложнее биоморфов третьей главы. У всех их было только девять генов. Они эволюционировали посредством изменений в этих девяти генах, никогда не увеличивая их число до десяти. Даже у реальных животных такие дублирования настолько редки, что моё определение вида, как общности с одной и той же системой «адресации» ДНК остаётся в силе.
Дублирование внутри вида — не единственный способ увеличения числа сотрудничающих генов в ходе эволюции. Бывают ещё более редкие, но всё же возможные и важные случаи случайного внедрения гена другого вида, даже чрезвычайно далёкого. Например, в корнях растений семейства гороха имеются гемоглобины. Они не встречаются ни в одном из других семейств растений, и можно практически уверенно полагать, что они — тем или иным путём, проникли в семейство гороха благодаря перекрёстной инфекции с животными, причём посредниками, возможно, выступали вирусы.