Эта общность чувствуется и в других текстах. В "Государстве" (VII 530а) смешным объявляется тот, кто в телесных чертежах находил бы подлинную истину геометрии, кто "стал бы признавать здесь истинность равенства, удвоенности или какой-нибудь другой симметрии". Здесь "симметрия" даже вовсе не "симметрия" и даже вовсе не "мерность", а всего только "отношение". В "Законах" (XI 925а): "О сообразности или несообразности времени вступления в брак будет заключать и решать судья", - "сообразность" здесь есть "симметрия", а "несообразность" - ametria, - то есть вместо symmetria, очевидно, вполне можно было бы поставить и просто metron (то же самое мы встречаем в Soph. 228а). "Неровность местности является... более подходящей и для упражнения в пеших бегах" (Legg. I 625d). Здесь symmetros переведено "подходящий", и переводить его менее общим выражением нецелесообразно.

Несколько больше подчеркивается структурность симметрии, может быть, в "Критии" (116d): "Храм самого Посейдона имел одну стадию в длину, три плефра в ширину и пропорционально (symmetron) тому на вид высоту". Что тут значит "симметрия", нам неясно. Но ясно, что имеется в виду какое-то структурное соответствие. Подобное же значение имеет symmetros, "соответствующий", в "Меноне" (76d), где говорится о соответствии зрению истечения фигур, создающих цвета (почти то же самое - Theaet. 156, Tim. 67с), или в "Законах" (V 774с), где говорится о неравенстве граждан, правильно распределенных по имущественному цензу (о взаимном соответствии вступающих в брак - Legg. VI 772е, о необходимости трудов, соразмерных здоровью, - VII 789а, о соответствии забот делам - 803b). "Разве не является благодетелем всякий, кто приводит к соразмерности (symmetron) и единообразию (homalen) любую разнообразную (anomalon) и несоразмерную (asymmetron) собственность (oysian)?" (XI 918b).

Точно так же некоторого рода структурность можно находить в "Софисте" (235е-236а), где говорится об искажении предметов, образующихся вследствие перспективы. "Если они [художники] создают истинную симметрию прекрасных предметов, то ты знаешь, что более высокое кажется меньше нижнего, а более низкое - больше, ввиду того что первые бывают видимы нами издали, а последние - вблизи. Так не расстаются ли при таких обстоятельствах художники с истиной, когда образам, отделываемым ими, они придают не действительно прекрасные размеры (tas oysas symmetrias), но кажущиеся таковыми?" Здесь "симметрия" только намекает на структурность, на деле же она значит (как это и переведено) именно "размеры"; или точнее, - если перевести также приставку этого слова, - "совокупность размеров".

Имеется в виду составленность из единиц длины, но без всякого структурного взаимоотношения этих длин (Parm. 140bc):

"Будучи равным, оно будет тех же мер [из того же количества единиц меры] с тем, чему оно будет равно... Если же оно больше или меньше по сравнению с тем, чему оно соразмерно (xymmetron), то в отношении к меньшему оно будет иметь больше мер [больше размером], а в отношении к большему оно будет иметь меньше мер [меньше размером]... С чем же оно несоизмеримо (me symmetron), в отношении к тому оно будет один раз иметь меньшие меры, другой раз большие". Под "симметрией", очевидно, здесь понимается просто математическая соразмерность, то есть возможность нахождения единой меры измерения. Термин "симметрия" доходит у Платона даже до указания просто на смешения стихий (Tim. 66а).

Есть, однако, еще один текст из "Теэтета", математический с виду, который представляет собою любопытнейший объект для историка эстетических размышлений, хотя еще ни один историк эстетики не подверг его достаточному анализу, а русские переводчики (Карпов и Сережников) сделали все, чтобы превратить его в полную бессмыслицу. Даем этот текст (147d-148а) в нашем переводе:

Перейти на страницу:

Все книги серии История античной эстетики

Похожие книги