Динамика коллапса имеет скорее вероятностный, чем детерминистический характер. Если частица находится в состоянии, являющемся суперпозицией каких-то положений, то при измерении ее положения мы знаем, что она коллапсирует в состояние с определенным положением, но не знаем, каким оно будет. Скорее для каждого потенциально коллапсированного состояния постулат измерения конкретизирует вероятность того, что данная система коллапсирует в это состояние. Эта вероятность[191] задается квадратом амплитуды волновой функции в положении, соответствующем определенному значению, о котором идет речь. К примеру, если спин частицы — суперпозиция спина — «вверх» (с амплитудой 1/2) и спина — «вниз» (с амплитудой √3/2), то при измерении спина он коллапсирует в состояние спина — «вверх» с вероятностью 1/4 и в состояние спина — «вниз» с вероятностью 3/4. Амплитуды волновой функции всегда таковы, что сумма соответствующих вероятностей равна 1.

<p>3. Интерпретируя квантовую механику</p>

Два этих принципа вместе составляют исключительно мощное исчисление для предсказания результатов экспериментальных измерений. Для предсказания результатов эксперимента мы выражаем состояние системы в виде волновой функции и вычисляем, как эта волновая функция изменяется во времени в соответствии с уравнением Шредингера до момента измерения. При измерении мы используем амплитуды вычисленной волновой функции для определения вероятности появления различных коллапсированных состояний и того, что измерение даст нам ту или иную величину. Экспериментальные результаты однозначно подкрепляли предсказания данной теории; мало какие научные теории были столь же успешны в плане предсказаний. В качестве исчисления эта теория очень прочна.

Проблемы возникают, когда мы задаемся вопросом о том, как могло бы работать это исчисление. Что могло бы случаться в реальном мире для обеспечения столь высокой точности предсказаний данного исчисления? Это проблема интерпретации квантовой механики. Существует множество вариантов решения этой проблемы, но все они не лишены недостатков.

Вариант 1: Понимать исчисление буквально

Первой естественной реакцией было бы истолковать формализм квантовой механики в буквальном смысле, как мы это делаем с большинством научных теорий. Данное исчисление содержит волновую функцию, задаваемую динамикой уравнения Шредингера и постулатом измерения, и оно работает, так что мы должны предполагать, что оно рисует нам непосредственную картину происходящего в мире. Иначе говоря, состояние системы на самом деле является именно этим волновым состоянием, выражаемым волновой функцией и изменяющимся сообразно динамике, выражаемой двумя упомянутыми базовыми принципами. В основном это состояние изменяется в соответствии с уравнением Шредингера, но при измерении оно изменяется в соответствии с постулатом измерения. Согласно этому воззрению, мир состоит из волн, обычно линейно изменяющихся в суперпозиции и иногда коллапсирующих в более определенное состояние при осуществлении измерения.

Осмыслить эту картину, однако, не так просто. Все проблемы идут от постулата измерения. В соответствии с этим постулатом, коллапс происходит при выполнении измерения, но что считать измерением? Как природа узнает о том, в какой момент производится измерение? «Измерение» уж точно не является каким-то базовым термином законов природы; если постулат измерения должен хотя бы отдаленно напоминать фундаментальный закон, понятие измерения должно быть заменено чем-то более ясным и основополагающим. Если коллапс волновой функции — объективно существующий процесс в мире, то нам нужны ясные, объективные критерии, позволяющие установить, когда этот процесс имеет место.

Очевидно ошибочным было бы сказать, что коллапс происходит в тех случаях, когда квантовая система взаимодействует с измерительным прибором. Проблема здесь в том, что наличие понятия «измерительного прибора» в базовых законах столь же неправдоподобно, как и наличие в них понятия «измерения». Раньше нам нужны были критерии для измерения; теперь нам требуются критерии для измерительного прибора.

На заре квантовой механики часто говорили, что измерительный прибор — это классическая система, и что измерение происходит при любом взаимодействии квантовой системы с классической системой. Ясно, однако, что это неудовлетворительное решение. Квантовая теория имеет, как предполагается, универсальный характер, и она должна быть применима к процессам внутри измерительного прибора ничуть не меньше, чем ко всем остальным. Если мы не готовы допустить, что в мире существует два фундаментально различных вида физических объектов — а это допущение потребовало бы создания совершенно новой теории — то выражение «классическая система» не может быть термином, используемым в фундаментальном законе природы — ничуть не отличаясь этим от «измерения».

Перейти на страницу:

Все книги серии Философия сознания

Похожие книги