Важно: для последующего расчётного сравнения геометрию предлагаемого цилиндра всегда можно подобрать так, что его масса будет равна массе классического цилиндра, а внутренний объём цилиндров в обоих случаях также будет одинаков. При этом и диаметры нижних частей обоих вариантов цилиндров, в которых перемещаются рабочие поршни – одинаковы. Разница только в верхних частях цилиндров, в которых перемещаются поршни-вытеснители.

Предлагаемый поршень-вытеснитель принципиально отличается как от поршня-вытеснителя, применяемого в LTD – low temperature difference engines – двигателях Стирлинга с низкой разницей температур, т. е. работающих в режиме с низким перепадом температур между горячими и холодными зонами, так и от классического цилиндрического тонкостенного поршня-вытеснителя, внутренний объём которого для предотвращения смятия высоким давлением рабочего газа сообщается посредством отверстия с общими объёмами двигателя, образуя тот самый «мёртвый» объём, резко ухудшающий эффективность двигателя.

Действительно, предлагаемый чашеобразный тонкостенный поршень-вытеснитель не имеет внутренних объёмов и, следовательно, не зависит от величины давления рабочего газа, легче, прочнее и устойчив к вибрации, а в известных LTD-стирлингах поршень-вытеснитель одновременно несёт на себе ещё и регенераторную насадку, что резко утяжеляет его и обуславливает крайне низкие обороты двигателя, ограничивая область применения ролью учебного пособия.

Геометрия предлагаемого поршня-вытеснителя и соответствующей ему головки цилиндра может варьироваться в широких пределах, но подбирается так, чтобы верхняя поверхность поршня-вытеснителя в положении верхней «мёртвой точки» могла прилегать без зазоров к внутренней теплоподводящей поверхности головки цилиндра для контактного получения от неё тепла, а нижняя поверхность поршня-вытеснителя в положении нижней «мёртвой точки» – к теплоотводящей внутренней поверхности цилиндра для контактной же отдачи тепла.

Предлагаемый поршень-вытеснитель формой может напоминать сегмент шара, параболическую антенну, кубок, рюмку или иное тело вращения, а может иметь в плане форму многоугольника. Ещё более интересен и перспективен вариант с рёбрами жёсткости и развитыми фрактальными поверхностями, значительно увеличивающими площади теплообмена.

Материал предлагаемого поршня-вытеснителя должен иметь низкую теплопроводность, например, керамоматричный композит, это возможно, поскольку работа стирлинга происходит без взрывов и резких ударов, а на верхней и нижней его поверхностях может быть сделано покрытие из тонкой фольги или напыление металла с высокой теплопроводностью, например, меди.

В результате, большой диаметр поршня-вытеснителя, а также соответственно большие теплоподводящие и теплоотводящие внутренние поверхности головки цилиндра, сопрягаемые в положениях «мёртвых точек» с верхней и нижней поверхностями поршня-вытеснителя, создают условия для гораздо более интенсивного прогрева объёма рабочего газа, находящегося между поршнем-вытеснителем и теплоподводящей внутренней поверхностью головки цилиндра, и гораздо более интенсивного охлаждения объёма рабочего газа, находящегося между поршнем-вытеснителем и теплоотводящей внутренней поверхностью цилиндра. В некоторых случаях площадей теплообмена будет достаточно, чтобы отказаться от нагревательных трубок, что дополнительно уменьшит «мёртвый» объём.

Поскольку предлагаемый поршень-вытеснитель обладает существенно большим диаметром, то, очевидно, чтобы «вытеснять», «описывать», «ометать» – в литературе применяются разные термины – тот же объём рабочего газа, что и классический поршень-вытеснитель, диаметр которого равен или близок к диаметру рабочего поршня, предлагаемый поршень-вытеснитель должен иметь меньший ход по сравнению с классическим вариантом! Это условие важно для сохранения равенства масс рабочего газа в рабочих объёмах классического и предлагаемого цилиндров для последующего расчётного сравнения с двигателем-прототипом. Позже расчёт такой зависимости хода от диаметра предлагаемого поршня-вытеснителя будет показан на реальном примере. Причём ход рабочих поршней сравниваемых схем должен оставаться равным, чтобы расчётная производимая работа была максимально одинаковой для обеих сравниваемых схем.

Такое расчётное сравнение является целью настоящей работы, а критерием перспективности предлагаемого поршня-вытеснителя будет получение равенства производимой работы для обеих сравниваемых схем при условии равенства масс рабочего газа и диаметров рабочих поршней.

Почему только равенство, а не превосходство? Причина в том, что пока нет достаточно простой и надёжной методики расчёта главного бесспорного преимущества предлагаемого поршня-вытеснителя – интенсификации теплообменных процессов.

Перейти на страницу:

Похожие книги