Например, когда вода кипит при нормальном атмосферном давлении, мы можем выбрать наугад небольшой объём внутри кастрюли и спросить себя: будет ли этот объём содержать пар или жидкую воду? В небольших масштабах описание окажется очень сложным. Очевидно, что не имеет смысла спрашивать про отдельную молекулу, представляет она собой жидкость или газ, потому что жидкое или газообразное состояние — это свойство множества молекул, характеризующееся, например, тем, близко или далеко они в среднем находятся друг от друга. Очевидно, что для нескольких молекул этот вопрос также не имеет смысла, потому что в процессе движения и столкновений молекулы могут находиться и в жидкости, и в газе, как далеко, так и близко друг от друга. Но как только рассматриваемый нами объём начинает содержать достаточно много молекул, чтобы можно было говорить об их усреднённом поведении, вопрос об агрегатном состоянии воды приобретает смысл.

Когда вода кипит при нормальных условиях, пузыри водяного пара и жидкость сосуществуют совместно. Обычно говорят, что при температуре 100 °С на уровне моря вода претерпевает фазовый переход первого рода. Любой макроскопический объём воды при температуре, точно соответствующей точке кипения, по прошествии некоторого времени приходит либо в газообразную, либо в жидкую фазу. Оба варианта являются равновероятными. При температуре чуть ниже точки кипения вода в любом пробном объёме всегда будет обнаруживаться в жидком состоянии, при температуре чуть выше точки кипения — в газообразном.

Несмотря на огромную сложность локальных процессов, идущих в воде в точке кипения, когда вода постоянно переходит из жидкого состояния в газообразное и обратно, всегда существует некий пограничный объём, относительно которого вопрос об агрегатном состоянии воды в нём имеет смысл. Для меньших объёмов локальные неоднородности плотности делают вопрос об агрегатном состоянии бессмысленным. Для больших объёмов можно однозначно сказать, в каком состоянии находится в них вода.

Разве не удивительно, что такая сложная система проявляет черты такого единообразного поведения? Это является следствием того факта, что каждая капля воды содержит невероятно огромное количество молекул, и хотя небольшие группы молекул могут вести себя хаотично, в большом объёме их совокупность приобретает конкретные макроскопические свойства. Это чем-то напоминает поведение людей. Каждый отдельный человек имеет свои собственные причины голосовать за того или иного политического кандидата. Некоторые даже пытаются пройти на избирательные участки со своими собственными бюллетенями, в которых вписано имя кандидата, не представленного в общем списке. Но на основе опросов общественного мнения политтехнологи могут с высокой степенью достоверности предсказать, кто из кандидатов победит на выборах. При усреднении по большому количеству избирателей все их индивидуальные различия нивелируются.

Теперь, когда мы обнаружили скрытый порядок в первоначальном хаосе, попробуем извлечь из него полезную информацию. Например, зададимся вопросом, изменяется ли масштаб, на котором становятся значимыми различия между жидким и газообразным состоянием, при изменении температуры и давления, при которых кипит вода. Если увеличить давление и таким образом увеличить плотность водяного пара, уменьшив тем самым разницу между плотностью пара и плотностью воды, то температура, при которой кипит вода, тоже увеличится. Из-за того, что теперь в точке кипения разность плотностей воды и пара меньше, размер областей, внутри которых агрегатное состояние воды будет неопределённым, как нетрудно догадаться, увеличится.

Если мы будем продолжать увеличивать давление, то придём к тому, что при определённых значениях давления и температуры, называемых критическими, различие между жидкостью и газом пропадёт в любом, даже бесконечном объёме. Вещество в таком состоянии невозможно отнести ни к жидкости, ни к газу. Немного ниже этой температуры и плотности вода больше похожа на жидкость, немного выше — на газ. Но станете ли вы считать воду при критической температуре жидкостью, газом или и тем и другим одновременно, зависит только от вашей точки зрения.

В критической точке у воды появляются новые, отсутствующие у жидкой воды и у водяного пара, свойства. Во-первых, на всех масштабах вещество выглядит одинаково. Вода в критической точке является «самоподобной» относительно изменения масштаба, в котором вы её изучаете. Если изобразить происходящие в воде флуктуации в большом увеличении, вы не заметите никаких отличий от картины этих флуктуации при обычном масштабе. Во-вторых, в критической точке в воде возникает явление, называемое критической опалесценцией. Из-за того, что в воде присутствуют флуктуации любого размера, она начинает рассеивать свет, имеющий любую длину волны, что проявляется в том, что вода теряет прозрачность и становится больше похожей на облако.

Перейти на страницу:

Все книги серии Pop Science

Похожие книги