перспективности данного типа сенсоров. Мы приведём короткое описание исходного

прибора.

Индикатор геофизических аномалий ИГА-1 представляет собой высокочувствительный

селективный измеритель электромагнитного поля. Предназначен для измерения

электромагнитной составляющей геомагнитного поля Земли в диапазоне 5...10 кГц,

чувствительность прибора составляет от единиц до сотен пиковольт. В качестве выходного

параметра прибора используется интеграл фазового сдвига на анализируемой частоте.

Прибор выполнен в виде переносного измерительного датчика с визуальной индикацией и

соединённого с ним кабелем блока питания. Питание прибора осуществляется от сети

переменного тока или аккумуляторов, потребляемая мощность — 5 Вт. Прибор ИГА-1

относится к разработкам в области экологии, медицины и подземной разведки и может быть

использован для обнаружения воздействия на человека аномалий земного излучения, в том

числе электромагнитного, в так называемых геопатогенных зонах, для измерения в целях

медицинской диагностики, подземной разведки металлических и неметаллических

трубопроводов, пустот, водяных жил, захоронений. Аппаратура ИГА-1 выпускается в трёх

вариантах: для измерений в помещениях, для измерений в полевых условиях и в

стационарном варианте для отработки связи (см. рис. 104).

Погрешности этого метода довольно низки. Во-первых, сенсор практически не зависит

от температуры (только электронная схема преобразователя). При работе в стационарном

режиме влияние паразитических электрических полей (например от проводки) легко

компенсируется. Использование инструментальных прецизионных усилителей позволяет

оставаться на уровне 0,1-0,01% систематической погрешности.

Рис. 104

Случайная погрешность зависит от конкретной схемы подвода излучения. Для

переносных приборов она очень высокая, поскольку даже при приближении антенны к

любой поверхности наблюдается сильная реакция на электрические/электростатические

поля. В лаборатории эти типы сенсоров используются только как стационарные приборы.

Сенсоры на основе фазовых переходов

Тесты на основе фазовых переходов могут быть выполнены с различными

материалами, принимающими жидкую форму. Наиболее удобным из них является вода или

жидкие полимеры. Очень интересны тесты, связанные с агрегацией гомогената зелёных

листьев (сильно измельчённый биологический материал, просеянный через мелкое сито)

[457]. Тесты с расплавленными металлами, хоть и по ним получено большое количество

данных [456], вряд ли можно использовать в условиях большинства тестовых лабораторий

(об этих работах будет сказано подробнее в следующих главах).

В литературе известны эксперименты с выпариванием и вымораживанием воды.

Авторы в [411] выпаривали водный раствор сульфата меди при комнатной температуре. Была

установлена зависимость размера кристаллов от частоты работы генератора.

Испарение воды и анализ полученных кристаллов также были проведены в [410]. В

[420] проводился анализ кинетических кривых изотермического испарения проб воды. В

работах [453; 454] авторы визуально анализировали кристаллы, полученные при замерзании

воды. Однако все эти работы помимо эффекта продемонстрировали также и сложность

получения количественных данных при анализе.

Рис. 105. Дефект полимеризации под воздействием излучения. Видно образование

концентрических узоров в пластике.

Рис. 106. Примеры тестов конденсации гомогената под воздействием пассивного

генератора (система конусов), (а) Вертикальная кювета, контрольный замер; (б)

вертикальная кювета, экспериментальный замер; (в) горизонтальная кювета, контрольный

и экспериментальные замеры.

Для получения количественных данных можно использовать анализ динамики

льдообразования и анализ изменения некоторых свойств пластиков при полимеризации под

действием «высокопроникающего излучения» [455]. Как известно, замерзание воды

происходит неравномерно и зависит от многих факторов, например от активности воды [498],

наличия ядер твёрдой фазы и других факторов. Более того, динамика замерзания воды

включает в себя несколько фаз, на основе которых предложены многие устройства, например

по очистке воды [499]. Для анализа льдообразования и построения моделей привлекаются

также спиновые квантово-механические концепции [500].

Перейти на страницу:

Похожие книги