где ρ (х, у) — расстояние от точки (х, у) до угла у ≥ с | х | (рис. 62). Число с > 0 является модулем (инвариантом): оболочки, соответствующие разным с, не сводятся одна к другой гладким преобразованием.

Рис. 61. Типичные особенности выпуклых оболочек пространственных кривых

Особенности выпуклых оболочек в пространстве большей размерности мало изучены. Согласно В. Д. Седых, выпуклая оболочка общего k-мерного многообразия в пространстве размерности выше к+2 имеет модули, являющиеся функциями к переменных.

Рис. 62. Типичные особенности выпуклых оболочек поверхностей

Тень, отбрасываемая бесконечно-гладким или даже аналитическим выпуклым телом, может, как это ни кажется странным, иметь особенности. А именно, граница тени трехмерного выпуклого тела может иметь разрывы третьей производной, а тела размерности 4 и выше — даже второй (И. А. Богаевский, 1990).

Много новых интересных особенностей возникает в оптимизационных задачах с ограничениями, например в задаче об обходе препятствия. Их исследование привело к новым результатам в одной из самых классических областей математики — геометрии гладких поверхностей в трехмерном пространстве.

<p><strong>12. Гладкие поверхности и их проектирования</strong></p>

Гладкая кривая на плоскости может иметь касательную со сколь угодно большим числом точек касания (рис. 63), но это не в случае общего положения. Малым шевелением кривой можно добиться того, что никакая прямая не будет касаться ее более чем в двух точках.

Рис. 63. Тройная касательная нетипичной кривой

В скольких точках может касаться прямой поверхность общего положения? Немного подумав или поэкспериментировав, читатель может убедиться, что наибольшее число точек касания равно четырем; сохраняя три точки касания, прямую можно двигать, две — двигать в двух направлениях.

Порядок касания прямой с кривой или поверхностью также может быть различным (например, порядок касания оси х с графиком у = х2 первый, х3 — второй и т. д.) Плоская кривая общего положения не имеет касательных выше второго порядка (второй порядок касания встречается в отдельных точках кривой, называемых точками перегиба).

Для поверхности в пространстве дело обстоит уже не так просто. В точках, близ которых поверхность не выпукла, имеются касательные выше первого порядка (они называются асимптотическими касательными). Для поверхности общего положения касательные третьего порядка имеются на некоторой линии, а четвертого — в отдельных точках; касательных выше четвертого порядка общая поверхность не имеет.

Все точки поверхности общего положения делятся по порядкам касательных на следующие 7 классов (рис. 64):

1) область эллиптических точек (все касательные порядка 1);

2) область гиперболических точек (две асимптотические касательные).

Эти две области разделяет общая граница:

3) линия параболических точек (одна асимптотическая касательная).

Рис. 64. Классификация точек на гладкой поверхности

Внутри области гиперболичности выделяется особая линия:

4) кривая перегиба асимптотических линий (есть касательная третьего порядка).

Наконец, на этой кривой выделены еще особые точки трех типов:

5) точка двойного перегиба касательная четвертого порядка;

6) перегиб обеих асимптотических линий (две касательные третьего порядка);

7) обилие точки линий 3) и 4).

Для поверхностей общего положения в точках 6) происходит пересечение двух ветвей линии перегибов под ненулевым углом, а в точках 7) — касание (первого порядка) линий 3) и 4).

Описанная классификация точек поверхности (О. А. Платонова, Е. Е. Ландис) следующим образом связана с классификацией особенностей волновых фронтов.

Математики называют точками объекты любой природы. Рассмотрим, например, множество всех невертикальных прямых на плоскости (х, у).

Такие прямые задаются уравнениями вида у = ах + b. Следовательно, одна прямая определяется парой чисел (а, b) и может рассматриваться как точка плоскости с координатами (а, b). Эта плоскость называется двойственной к исходной плоскости. Ее точки — это прямые исходной плоскости.

Если на исходной плоскости дана гладкая кривая, то в каждой ее точке имеется касательная прямая. При движении точки вдоль кривой касательная меняется, следовательно, движется точка двойственной плоскости. Таким образом, на двойственной плоскости возникает кривая — множество всех касательных исходной кривой. Эта кривая называется двойственной к исходной.

Если исходная кривая гладкая и выпуклая, то двойственная кривая тоже гладкая, если же исходная кривая имеет точку перегиба, то на двойственной кривой ей соответствует точка возврата (рис, 65).

Рис. 65. Двойственность точек перегиба и возврата

Перейти на страницу:

Похожие книги