Плутоний — химический элемент, который в земной коре содержится в совершенно ничтожном количестве. Он получается искусственно в результате облучения урана нейтронами. Быстрые нейтроны, попадая в ядра урана 238, вызывают его деление, а медленные нейтроны поглощаются ядрами урана 238, причем получается новый изотоп урана — уран 239 — по реакции

0n1+92U238=92U239+γ.

Избыток энергии выделяется при этом в виде гамма-излучения. Изотоп U239 радиоактивен. Он распадается, испуская бета-частицы, период его полураспада равен 23,5 минуты. Распад U239 происходит по уравнению

92U23993Np239+-1β0

Образовавшийся элемент № 93 получил название нептуний. Изотоп нептуния Np239 также радиоактивен. Его период полураспада равен 2,3 дня. Распадаясь, он выбрасывает бета-частицу по уравнению

93Np23994Pu239+-1β0

В результате бета-распада нептуния образуется изотоп нового элемента — плутония.

Искусственно получаемый изотоп плутония 94Pu239 приобрел огромное значение в атомной технике. Объясняется это тем обстоятельством, что он является прекрасным ядерным горючим, может производиться в достаточно больших количествах из доступного сырья и хотя является неустойчивым, но распадается с испусканием альфа-частиц очень медленно: его период полураспада равен 24 000 лет.

Для производства плутония необходимо каким-нибудь способом получать медленные нейтроны и бомбардировать ими уран 238. Такие процессы осуществляются в ядерных реакторах. Часть образующихся при этом нейтронов замедляется специальным замедлителем и поглощается ураном 238. Получающийся уран 239 распадается с образованием нептуния 239, а последний в свою очередь, распадаясь, превращается в плутоний 239. Так как в качестве основного исходного продукта в большинстве работающих в настоящее время ядерных реакторов применяется уран, то эти установки называются урановыми реакторами (или котлами).

Схема ядерного реактора приведена на рис. 20. Центральная часть реактора, его активная зона, состоит из графитового замедлителя — кирпичей 1, в которых имеются каналы. В эти каналы вставляются тепловыделяющие элементы 2, представляющие собой стержни или пластины, изготовленные из обогащенного урана. Блоки урана имеют небольшие размеры, так что быстрые нейтроны, образующиеся при делении урана 235, вылетают из тепловыделяющих элементов наружу и попадают в графит.

Рис. 20. Схема ядерного реактора:1 — графитовый замедлитель нейтронов; 2 — урановый тепловыделяющий элемент; 3 — компенсирующий стержень; 4 — стержень для регулировки мощности реактора; 5 — отражатель нейтронов; 6 — бетонная стена для поглощения излучений; 7 и 8 — трубы, подводящие и отводящие охлаждающую жидкость

Графит почти не поглощает нейтроны и является хорошим замедлителем. Сталкиваясь с ядрами углерода, из которого состоит графит, нейтроны теряют энергию и после нескольких десятков столкновений двигаются со сравнительно малой скоростью. Медленные нейтроны, попадая в тепловыделяющие элементы, поглощаются ураном 235 и вызывают его деление. При каждом делении урана 235 взамен одного поглощенного нейтрона образуется два или три новых. Поэтому при правильно рассчитанной конструкции реактора в нем может возникнуть цепная реакция.

Предположим, что в ядерном реакторе имеется 100 нейтронов. Если это «поколение» нейтронов в результате поглощения ураном и других процессов исчезает и вместо него при делении ядер урана образуется новое поколение, например 101 нейтрон, то число нейтронов в результате цепной реакции с течением времени будет возрастать. При этом выделяется огромное количество энергии, тепловыделяющие элементы и графит так быстро разогреваются, что может произойти серьезная авария. Чтобы исключить такую возможность, в графитовой кладке заранее оставляют каналы, в которые погружают специальные компенсирующие стержни 3. Эти стержни изготовляют из материалов, которые хорошо поглощают медленные нейтроны. В качестве таких материалов можно применять металлы: кадмий или гафний, а также бористую сталь или карбид бора.

Для регулировки процесса в ядерном реакторе служат изготовленные из вышеуказанных материалов специальные регулировочные стержни 4, также перемещающиеся в каналах в графитовой кладке.

Часть медленных нейтронов, беспорядочно двигающихся в графитовом сердечнике, подходит к поверхности кладки, вылетает из нее наружу и не принимает больше участия в цепной реакции. Для борьбы с утечкой нейтронов из реактора сердечник последнего окружается толстым слоем графита 5, который играет роль отражателя нейтронов. Благодаря отражателю ядерное топливо в урановом котле используется значительно полнее.

Перейти на страницу:

Все книги серии Научно-популярная библиотека («Воениздат»)

Похожие книги