Для описания состояний, отличных от основного, нам понадобится своя совокупность базисных состояний. Удобно подойти к делу так: сгруппировать состояния в соответствии с тем, у скольких электронов спин направлен вниз: у одного ли, у двух и т. д. Конечно, состояний, когда один спин направлен вниз, очень много: он может быть опрокинут, скажем, у атома № 4 или у № 5, или у № 6... И можно, конечно, в качестве базисных состояний выбрать именно такие состояния, обозначив их |4>, |5>, |6>, ... Однако для дальнейшего удобнее, если мы будем отмечать «из ряда вон выходящий атом» (тот, у которого спин направлен вниз) его координатой х. Иначе говоря, мы определим состояние |х5> как такое, в котором все электроны вращаются спинами вверх, и один только (тот, что возле атома в точке х5) вращается спином вниз (фиг. 13.1).

Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии. Все спины направлены вверх, а тот, что в х5, перевернут.

Вообще, |хn> будет обозначать состояние с одним перевернутым спином, расположенным в координате хn n-го атома.

Как же действует гамильтониан (13.5) на состояние |x5>? Один из членов гамильтониана это, скажем, — А(^P7,8-1). Оператор ^P7,8 обменивает спинами два соседних атома № 7 и № 8. Но в состоянии |x5> они оба направлены вверх, так что ничего не меняется; ^P7,8 равнозначно умножению на единицу:

Отсюда следует

Стало быть, все члены гамильтониана, кроме тех, куда входит атом № 5, дадут нуль. Операция ^P4,5, действуя на состояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется состояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,

Точно так же

Значит, изо всего гамильтониана выживут только члены —A(^P4,5—1) и A(^P5,6—1). Действуя на |x5>, они дадут соответственно —A|x4>+A|x5> и —A|x6>+A|x5>.

В итоге

(13.6)

Когда гамильтониан действует на состояние |x5>, то возникает некоторая амплитуда оказаться в состояниях |x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вначале один спин был направлен вниз, имеется некоторая вероятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние |хn> гамильтониан дает

(13.7)

Заметьте, в частности, что если взять полную систему состояний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем, Hn,m≡<xn|^H|xm>; уравнение (13.7) эквивалентно следующему:

(13.8)

Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn — амплитуда того, что некоторое состояние |ψ> находится в состоянии |xn>. Если мы хотим, чтобы |ψ> было состоянием с определенной энергией, то все Сn обязаны одинаково меняться со временем, а именно по правилу

(13.9)

Подставим это пробное решение в наше обычное уравнение Гамильтона

(13.10)

используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде

(13.11)

Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn (амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распространения k и энергией

(13.12)

где b — постоянная решетки.

Решения с определенной энергией отвечают «волнам» переворота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону

(13.13)

Как и прежде, мы можем теперь взять локализованный волновой пакет (содержащий, однако, только длинные волны), который соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна

(13.14)

Такие «частицы» иногда именуют «магнонами».

<p><strong>§ 2. Две спиновые волны</strong></p>

Теперь мы хотели бы выяснить, что происходит, когда имеется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).

Фиг. 13.2. Состояния с двумя перевернутыми спинами.

Перейти на страницу:

Поиск

Все книги серии Фейнмановские лекции по физике

Похожие книги