Однако математическую кухню питает не только огонь логики: на ней не обойтись без интуиции, аналогий, экспериментов, гипотез, то есть без мысли. Так как все люди мыслят по-разному или руководствуются разными интересами, на размышления математиков и их деятельность влияют общество и культура. Почему одна теорема более ценна, чем другая? Почему все пытаются доказать одни теоремы и не уделяют внимания другим? С помощью логики можно сделать бесконечное множество тривиальных умозаключений, которые не представляют никакой ценности. Развитие математической мысли вызвано интересом людей к решению задач, теоретических и практических, полезных и бесполезных, а сами задачи могут отражать стремление к знаниям или рассматриваться как личный вызов.

Полнее и точнее всего этот аспект математики описан в классических научно-популярных книгах, в частности «Что такое математика?» американских авторов Рихарда Куранта и Герберта Роббинса (первое издание вышло в 1941 году, с тех пор книга неоднократно переиздавалась), в более поздней книге «Математический опыт» Филипа Дэвиса и Рубена Херша (1999) или в книге последнего «Что же такое математика на самом деле?» (1997). В этой книге Херш приводит простой и понятный пример: «Формулу 2 + 2 = 4 можно доказать как теорему в некоторой модели аксиом, однако ее сила и убедительность происходят из физической модели — например, ее правильность нетрудно подтвердить с помощью монет или камней». Более того, логика, используемая в формальном доказательстве, которое упоминает Херш, появилась значительно позже, чем подсчет камней. Курант и Роббинс, в свою очередь, подчеркивают важнейшую роль, которую играют в развитии математики эксперимент, интуиция и аналогия:

«…хотя принципа математической индукции совершенно достаточно для того, чтобы доказать эту формулу — раз она уже написана, однако доказательство не дает решительно никаких указаний, как прийти к самой этой формуле… Тот факт, что доказательство теоремы заключается в применении таких-то простых логических правил, не оказывает ни малейшего влияния на творческое начало в математике, роль которого — делать выбор из бесконечного множества появляющихся возможностей. Вопрос о том, как возникает гипотеза, — из той области, в которой нет никаких общих правил; здесь делают свое дело эксперимент, аналогия, конструктивная индукция».

Логика очень важна в математике, однако она не настолько тесно связана с открытиями и изобретениями, как может показаться. Логика не указывает путь и не подсказывает, как найти решение. Этот путь открывают эксперимент, аналогия и интуиция, а затем логика превращает эти нехоженые тропинки в широкую магистраль, по которой может проехать любой. Проиллюстрируем это на примере, рассмотрев известную геометрическую задачу, решенную благодаря счастливому озарению.

Счастливое озарение

Даны две точки Р и и отрезок s, как показано на рисунке. Мы хотим попасть из точки Р в точку Q, пройдя через некоторую точку на отрезке s. Какой точке отрезка соответствует кратчайшая траектория?

Чтобы решить эту задачу, представим, что отрезок — это зеркало. Построим отражение точки Q в этом зеркале и обозначим его Q'. Проведем отрезок, соединяющий Р и Q', который пересечет s в точке X.

Отрезок PQ' определяет кратчайший путь между Р и Q', а точка пересечения этого отрезка с отрезком определяет положение точки X. Теперь осталось вновь использовать симметрию, отразить отрезок XQ' в зеркале s и увидеть, что длина отрезка XQ равна длине отрезка XQ'. Мы получили ломаную линию PXQ, длина которой равна длине отрезка PQ'.

Следовательно, кратчайший путь из точки Р в точку Q, проходящий через точку на отрезке s, будет лежать через точку X.

Как автору этого решения пришла в голову идея использовать симметрию? Как его только осенило? И такое удивление вызывает любая полезная идея, которая пришла не нам в голову. Тем не менее математическому творчеству и решению задач можно научиться, и наша книга — именно об этом.

Приведенное решение основано на том, что симметрия сохраняет расстояния, а отрезок является кратчайшей линией, соединяющей две данные точки. Теперь, когда вам уже известно решение этой задачи, оно может показаться тривиальным, однако тому, кто видит эту задачу впервые, его непросто найти, так что перед нами — яркий пример творчества.

Перейти на страницу:

Все книги серии Мир математики

Похожие книги