Представьте бизнесмена, совершающего ту же поездку, что и наш фотон. Он уезжает из Лондона в костюме с Сэвиль-Роу[132] и приезжает в Париж в точно таком же костюме. Есть шанс, что путешественник носил его на протяжении всего своего путешествия. И есть шанс, что нет. Возможно, в какие-то моменты на нем были футбольная форма или коктейльное платье. Вы этого никогда не знаете. Квантовая механика — игра вероятностей. Если есть какой-то шанс, что фотон проведет некоторое время в костюме электрона и позитрона, вам придется это учитывать. Вы можете считать эти альтернативные наряды виртуальными частицами, которые никогда не увидят, никогда не поймают и не перехватят, но которые в итоге оставят свой след. И мы зафиксировали его. Виртуальные электроны и позитроны вызывают расщепление энергетических уровней в атомах водорода — это установил Уиллис Лэмб в 1947 году.
Что все это означает для бозона Хиггса? Если вы спросите, как он попал из Лондона в Париж, то, как и в случае с фотоном, вы не сможете считать, что он все это время был одет как бозон Хиггса. Есть вероятность, что какое-то время он был одет как кварк, электрон или какое-то другое поле, о котором мы даже не знаем. И все это оставит свой след.
Какой именно? Ну все эти перемены костюмов могут вызвать у бозона Хиггса проблемы с массой. Поскольку есть вероятность того, что он какое-то время маскировался под электрон и позитрон, бозон Хиггса захочет ощутить их вес. Вы можете представить, что хиггсон отягощен размером своего гардероба. Виртуальные электроны и позитроны, в которые он переодевается, представляют собой своего рода квантовую среду, воздействующую на бозон, когда он пытается двигаться. С чемоданом, полным этих виртуальных частиц, хиггсон становится тяжелым. Вопрос: насколько тяжелым?
Если бы виртуальные электроны и позитроны весили столько же, как настоящие электроны и позитроны, нам не о чем было бы беспокоиться. Настоящие электроны и позитроны в 100 000 раз легче бозона Хиггса, и такая маленькая добавка к весу чемодана вряд ли что-нибудь изменит. Однако в случае
Чтобы понять, откуда берутся виртуальные тяжеловесы, нужно еще немного подумать о крайне скоростной смене костюма. Когда бозон Хиггса быстро появляется и исчезает как электрон-позитронная пара, мы ощущаем это исключительно в виде кратковременного импульса в электронном поле. Но благодаря принципу неопределенности Гейзенберга кратковременные колебания могут означать действительно большие энергии:
Помните моего старого друга Фила Мориарти из главы «Гуголплекс»? Он использовал прием «чаг» на своей гитаре, и самые короткие звуки затрагивали самый широкий диапазон частот. То же происходит с электроном и позитроном: чем короче время их появления, тем большей энергии они могут достичь. Эти виртуальные частицы наполняют чемодан огромной энергией, или (что то же самое) огромной массой, которая все сильнее отягощает бозон Хиггса. Если бы вы разрешили электронам и позитронам появляться и исчезать почти мгновенно, они могли бы принести энергию, которая превышает число Грэма или число TREE(3) в любых единицах, которые вам вздумалось бы использовать, и бозон Хиггса мог бы оказаться сколь угодно тяжелым. Однако это уже перебор. Мы не можем придать смысл превращению бозона Хиггса в электрон и позитрон на сколь угодно мало время. Это слишком быстро. Это разрушило бы ткань пространства и времени. Когда мы играли в Игру деревьев в главе «TREE(3)», то узнали, что на самом деле вы не можете сделать ничего быстрее планковского времени, которое составляет около 5 × 10–44 секунд. Но это все равно очень маленькое время. Если мы позволим бозону Хиггса так быстро меняться в электронном поле, возникнут огромные неопределенности в количестве энергии. Если вы сядете и посчитаете, сколько массы попадет в чемодан, то есть сколько вернется к бозону Хиггса, вы обнаружите, что это очень близко к той массе, которую можно было бы ожидать от квантовой черной дыры. Или мимариды[133].